Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. t
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\int \frac{4}{\sqrt[5]{t}}\mathrm{d}t+\int \frac{3}{t^{6}}\mathrm{d}t
Tintegra s-somma terminu b'terminu.
4\int \frac{1}{\sqrt[5]{t}}\mathrm{d}t+3\int \frac{1}{t^{6}}\mathrm{d}t
Iffattura ‘l barra l-kostanti f’kull wieħed minn dawn it-termini.
5t^{\frac{4}{5}}+3\int \frac{1}{t^{6}}\mathrm{d}t
Erġa' ikteb \frac{1}{\sqrt[5]{t}} bħala t^{-\frac{1}{5}}. Minn \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int t^{-\frac{1}{5}}\mathrm{d}t ma' \frac{t^{\frac{4}{5}}}{\frac{4}{5}}. Issimplifika. Immultiplika 4 b'\frac{5t^{\frac{4}{5}}}{4}.
5t^{\frac{4}{5}}-\frac{\frac{3}{t^{5}}}{5}
Minn \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int \frac{1}{t^{6}}\mathrm{d}t ma' -\frac{1}{5t^{5}}. Immultiplika 3 b'-\frac{1}{5t^{5}}.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}
Issimplifika.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}+С
Jekk F\left(t\right) huwa antiderivattiv ta' f\left(t\right), allura s-sett tal-antiderivati kollha ta' f\left(t\right) jingħata minn F\left(t\right)+C. Għalhekk, żid il-kostanti ta' integrazzjoni C\in \mathrm{R} mar-riżultat.