Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. y
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}}{y^{5}}-\frac{1}{y^{5}})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{y^{5}}{y^{5}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}-1}{y^{5}})
Billi \frac{y^{5}}{y^{5}} u \frac{1}{y^{5}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{y^{5}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5}-1)-\left(y^{5}-1\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})}{\left(y^{5}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{y^{5}\times 5y^{5-1}-\left(y^{5}-1\right)\times 5y^{5-1}}{\left(y^{5}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{y^{5}\times 5y^{4}-\left(y^{5}-1\right)\times 5y^{4}}{\left(y^{5}\right)^{2}}
Agħmel l-aritmetika.
\frac{y^{5}\times 5y^{4}-\left(y^{5}\times 5y^{4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{5y^{5+4}-\left(5y^{5+4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{5y^{9}-\left(5y^{9}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Agħmel l-aritmetika.
\frac{5y^{9}-5y^{9}-\left(-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(5-5\right)y^{9}+\left(-\left(-5\right)\right)y^{4}}{\left(y^{5}\right)^{2}}
Ikkombina termini simili.
-\frac{-5y^{4}}{\left(y^{5}\right)^{2}}
Naqqas 5 minn 5.
-\frac{-5y^{4}}{y^{5\times 2}}
Biex tgħolli qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti.
\frac{\left(-\left(-5\right)\right)y^{4}}{y^{10}}
Immultiplika 5 b'2.
\left(-\frac{-5}{1}\right)y^{4-10}
Biex tiddividi l-qawwa tal-istess bażi, naqqas l-esponent tad-denominatur mill-esponent tan-numeratur.
5y^{-6}
Agħmel l-aritmetika.