Evalwa
\cos(x)
Iddifferenzja w.r.t. x
-\sin(x)
Sehem
Ikkupjat fuq il-klibbord
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0\pi ))
Immultiplika 0 u 25 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0))
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
Għall-funzjoni f\left(x\right), id-derivattiv huwa l-limitu ta' \frac{f\left(x+h\right)-f\left(x\right)}{h} billi h jmur għal 0, jekk jeżisti dak il-limitu.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Uża l-Formula tas-Somma għal Sine.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Iffattura 'l barra \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Erġa' ikteb il-limitu.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Uża l-fatt li x huwa kostanti meta taħdem il-limiti bħala h jmorru għal 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
Il-limitu \lim_{x\to 0}\frac{\sin(x)}{x} huwa 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Biex tevalwa l-limitu \lim_{h\to 0}\frac{\cos(h)-1}{h}, l-ewwel immultiplika n-numeratur u d-denominatur b'\cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Immultiplika \cos(h)+1 b'\cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Uża l-Pythagorean Identity.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Erġa' ikteb il-limitu.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Il-limitu \lim_{x\to 0}\frac{\sin(x)}{x} huwa 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Uża l-fatt li \frac{\sin(h)}{\cos(h)+1} huwa kontinwu f'0.
\cos(x)
Issostitwixxi l-valur 0 fl-espressjoni \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}