Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x^{2}-x+1 u x+1 huwa \left(x+1\right)\left(x^{2}-x+1\right). Immultiplika \frac{x-2}{x^{2}-x+1} b'\frac{x+1}{x+1}. Immultiplika \frac{1}{x+1} b'\frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Billi \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} u \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Agħmel il-multiplikazzjonijiet fi \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Ikkombina termini simili f'x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Iffattura x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Billi \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} u \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Ikkombina termini simili f'-3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Annulla x+1 fin-numeratur u d-denominatur.
\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x^{2}-x+1 u x+1 huwa \left(x+1\right)\left(x^{2}-x+1\right). Immultiplika \frac{x-2}{x^{2}-x+1} b'\frac{x+1}{x+1}. Immultiplika \frac{1}{x+1} b'\frac{x^{2}-x+1}{x^{2}-x+1}.
\frac{\left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Billi \frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)} u \frac{x^{2}-x+1}{\left(x+1\right)\left(x^{2}-x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{x^{2}+x-2x-2-x^{2}+x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Agħmel il-multiplikazzjonijiet fi \left(x-2\right)\left(x+1\right)-\left(x^{2}-x+1\right).
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{x^{3}+1}
Ikkombina termini simili f'x^{2}+x-2x-2-x^{2}+x-1.
\frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Iffattura x^{3}+1.
\frac{-3+x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)}
Billi \frac{-3}{\left(x+1\right)\left(x^{2}-x+1\right)} u \frac{x^{2}+x+3}{\left(x+1\right)\left(x^{2}-x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}
Ikkombina termini simili f'-3+x^{2}+x+3.
\frac{x\left(x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{x^{2}+x}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{x}{x^{2}-x+1}
Annulla x+1 fin-numeratur u d-denominatur.