Solvi għal x
x=\frac{\sqrt{13}-1}{6}\approx 0.434258546
x=\frac{-\sqrt{13}-1}{6}\approx -0.767591879
Graff
Sehem
Ikkupjat fuq il-klibbord
\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -\frac{1}{2},1 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(2x+1\right), l-inqas denominatur komuni ta' 2x+1,x-1.
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Immultiplika x-1 u x-1 biex tikseb \left(x-1\right)^{2}.
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Immultiplika 2x+1 u 2x+1 biex tikseb \left(2x+1\right)^{2}.
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(2x+1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
Uża l-propjetà distributtiva biex timmultiplika x-1 b'2x+1 u kkombina termini simili.
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
Uża l-propjetà distributtiva biex timmultiplika 2x^{2}-x-1 b'3.
x^{2}-2x+1=10x^{2}+4x+1-3x-3
Ikkombina 4x^{2} u 6x^{2} biex tikseb 10x^{2}.
x^{2}-2x+1=10x^{2}+x+1-3
Ikkombina 4x u -3x biex tikseb x.
x^{2}-2x+1=10x^{2}+x-2
Naqqas 3 minn 1 biex tikseb -2.
x^{2}-2x+1-10x^{2}=x-2
Naqqas 10x^{2} miż-żewġ naħat.
-9x^{2}-2x+1=x-2
Ikkombina x^{2} u -10x^{2} biex tikseb -9x^{2}.
-9x^{2}-2x+1-x=-2
Naqqas x miż-żewġ naħat.
-9x^{2}-3x+1=-2
Ikkombina -2x u -x biex tikseb -3x.
-9x^{2}-3x+1+2=0
Żid 2 maż-żewġ naħat.
-9x^{2}-3x+3=0
Żid 1 u 2 biex tikseb 3.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)\times 3}}{2\left(-9\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -9 għal a, -3 għal b, u 3 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)\times 3}}{2\left(-9\right)}
Ikkwadra -3.
x=\frac{-\left(-3\right)±\sqrt{9+36\times 3}}{2\left(-9\right)}
Immultiplika -4 b'-9.
x=\frac{-\left(-3\right)±\sqrt{9+108}}{2\left(-9\right)}
Immultiplika 36 b'3.
x=\frac{-\left(-3\right)±\sqrt{117}}{2\left(-9\right)}
Żid 9 ma' 108.
x=\frac{-\left(-3\right)±3\sqrt{13}}{2\left(-9\right)}
Ħu l-għerq kwadrat ta' 117.
x=\frac{3±3\sqrt{13}}{2\left(-9\right)}
L-oppost ta' -3 huwa 3.
x=\frac{3±3\sqrt{13}}{-18}
Immultiplika 2 b'-9.
x=\frac{3\sqrt{13}+3}{-18}
Issa solvi l-ekwazzjoni x=\frac{3±3\sqrt{13}}{-18} fejn ± hija plus. Żid 3 ma' 3\sqrt{13}.
x=\frac{-\sqrt{13}-1}{6}
Iddividi 3+3\sqrt{13} b'-18.
x=\frac{3-3\sqrt{13}}{-18}
Issa solvi l-ekwazzjoni x=\frac{3±3\sqrt{13}}{-18} fejn ± hija minus. Naqqas 3\sqrt{13} minn 3.
x=\frac{\sqrt{13}-1}{6}
Iddividi 3-3\sqrt{13} b'-18.
x=\frac{-\sqrt{13}-1}{6} x=\frac{\sqrt{13}-1}{6}
L-ekwazzjoni issa solvuta.
\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -\frac{1}{2},1 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(2x+1\right), l-inqas denominatur komuni ta' 2x+1,x-1.
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
Immultiplika x-1 u x-1 biex tikseb \left(x-1\right)^{2}.
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Immultiplika 2x+1 u 2x+1 biex tikseb \left(2x+1\right)^{2}.
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(2x+1\right)^{2}.
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
Uża l-propjetà distributtiva biex timmultiplika x-1 b'2x+1 u kkombina termini simili.
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
Uża l-propjetà distributtiva biex timmultiplika 2x^{2}-x-1 b'3.
x^{2}-2x+1=10x^{2}+4x+1-3x-3
Ikkombina 4x^{2} u 6x^{2} biex tikseb 10x^{2}.
x^{2}-2x+1=10x^{2}+x+1-3
Ikkombina 4x u -3x biex tikseb x.
x^{2}-2x+1=10x^{2}+x-2
Naqqas 3 minn 1 biex tikseb -2.
x^{2}-2x+1-10x^{2}=x-2
Naqqas 10x^{2} miż-żewġ naħat.
-9x^{2}-2x+1=x-2
Ikkombina x^{2} u -10x^{2} biex tikseb -9x^{2}.
-9x^{2}-2x+1-x=-2
Naqqas x miż-żewġ naħat.
-9x^{2}-3x+1=-2
Ikkombina -2x u -x biex tikseb -3x.
-9x^{2}-3x=-2-1
Naqqas 1 miż-żewġ naħat.
-9x^{2}-3x=-3
Naqqas 1 minn -2 biex tikseb -3.
\frac{-9x^{2}-3x}{-9}=-\frac{3}{-9}
Iddividi ż-żewġ naħat b'-9.
x^{2}+\left(-\frac{3}{-9}\right)x=-\frac{3}{-9}
Meta tiddividi b'-9 titneħħa l-multiplikazzjoni b'-9.
x^{2}+\frac{1}{3}x=-\frac{3}{-9}
Naqqas il-frazzjoni \frac{-3}{-9} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 3.
x^{2}+\frac{1}{3}x=\frac{1}{3}
Naqqas il-frazzjoni \frac{-3}{-9} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
Iddividi \frac{1}{3}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{1}{6}. Imbagħad żid il-kwadru ta' \frac{1}{6} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{3}+\frac{1}{36}
Ikkwadra \frac{1}{6} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{13}{36}
Żid \frac{1}{3} ma' \frac{1}{36} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x+\frac{1}{6}\right)^{2}=\frac{13}{36}
Fattur x^{2}+\frac{1}{3}x+\frac{1}{36}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{1}{6}=\frac{\sqrt{13}}{6} x+\frac{1}{6}=-\frac{\sqrt{13}}{6}
Issimplifika.
x=\frac{\sqrt{13}-1}{6} x=\frac{-\sqrt{13}-1}{6}
Naqqas \frac{1}{6} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}