Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Iddividi x b'\frac{3}{9} billi timmultiplika x bir-reċiproku ta' \frac{3}{9}.
x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Iddividi x\times 9 b'3 biex tiksebx\times 3.
x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Esprimi \frac{\frac{x}{25}}{100} bħala frazzjoni waħda.
x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Immultiplika 25 u 100 biex tikseb 2500.
\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Ikkombina x\times 3 u \frac{x}{2500} biex tikseb \frac{7501}{2500}x.
\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90}
Esprimi \frac{\frac{x}{2}}{10} bħala frazzjoni waħda.
\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90}
Immultiplika 2 u 10 biex tikseb 20.
\frac{3813}{1250}x+\frac{\frac{x}{15}}{90}
Ikkombina \frac{7501}{2500}x u \frac{x}{20} biex tikseb \frac{3813}{1250}x.
\frac{3813}{1250}x+\frac{x}{15\times 90}
Esprimi \frac{\frac{x}{15}}{90} bħala frazzjoni waħda.
\frac{3813}{1250}x+\frac{x}{1350}
Immultiplika 15 u 90 biex tikseb 1350.
\frac{51488}{16875}x
Ikkombina \frac{3813}{1250}x u \frac{x}{1350} biex tikseb \frac{51488}{16875}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Iddividi x b'\frac{3}{9} billi timmultiplika x bir-reċiproku ta' \frac{3}{9}.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Iddividi x\times 9 b'3 biex tiksebx\times 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Esprimi \frac{\frac{x}{25}}{100} bħala frazzjoni waħda.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Immultiplika 25 u 100 biex tikseb 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Ikkombina x\times 3 u \frac{x}{2500} biex tikseb \frac{7501}{2500}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90})
Esprimi \frac{\frac{x}{2}}{10} bħala frazzjoni waħda.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90})
Immultiplika 2 u 10 biex tikseb 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{\frac{x}{15}}{90})
Ikkombina \frac{7501}{2500}x u \frac{x}{20} biex tikseb \frac{3813}{1250}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{15\times 90})
Esprimi \frac{\frac{x}{15}}{90} bħala frazzjoni waħda.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{1350})
Immultiplika 15 u 90 biex tikseb 1350.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{51488}{16875}x)
Ikkombina \frac{3813}{1250}x u \frac{x}{1350} biex tikseb \frac{51488}{16875}x.
\frac{51488}{16875}x^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
\frac{51488}{16875}x^{0}
Naqqas 1 minn 1.
\frac{51488}{16875}\times 1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{51488}{16875}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.