Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3x^{2}}{2x\left(6x+10\right)}
Immultiplika \frac{3}{2x} b'\frac{x^{2}}{6x+10} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{3x}{2\left(6x+10\right)}
Annulla x fin-numeratur u d-denominatur.
\frac{3x}{12x+20}
Uża l-propjetà distributtiva biex timmultiplika 2 b'6x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{2}}{2x\left(6x+10\right)})
Immultiplika \frac{3}{2x} b'\frac{x^{2}}{6x+10} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{2\left(6x+10\right)})
Annulla x fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{12x+20})
Uża l-propjetà distributtiva biex timmultiplika 2 b'6x+10.
\frac{\left(12x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1}+20)}{\left(12x^{1}+20\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(12x^{1}+20\right)\times 3x^{1-1}-3x^{1}\times 12x^{1-1}}{\left(12x^{1}+20\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(12x^{1}+20\right)\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Agħmel l-aritmetika.
\frac{12x^{1}\times 3x^{0}+20\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{12\times 3x^{1}+20\times 3x^{0}-3\times 12x^{1}}{\left(12x^{1}+20\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{36x^{1}+60x^{0}-36x^{1}}{\left(12x^{1}+20\right)^{2}}
Agħmel l-aritmetika.
\frac{\left(36-36\right)x^{1}+60x^{0}}{\left(12x^{1}+20\right)^{2}}
Ikkombina termini simili.
\frac{60x^{0}}{\left(12x^{1}+20\right)^{2}}
Naqqas 36 minn 36.
\frac{60x^{0}}{\left(12x+20\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{60\times 1}{\left(12x+20\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{60}{\left(12x+20\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.