Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+2 u x-3 huwa \left(x-3\right)\left(x+2\right). Immultiplika \frac{2}{x+2} b'\frac{x-3}{x-3}. Immultiplika \frac{7}{x-3} b'\frac{x+2}{x+2}.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Billi \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} u \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
Agħmel il-multiplikazzjonijiet fi 2\left(x-3\right)-7\left(x+2\right).
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
Ikkombina termini simili f'2x-6-7x-14.
\frac{-5x-20}{x^{2}-x-6}
Espandi \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+2 u x-3 huwa \left(x-3\right)\left(x+2\right). Immultiplika \frac{2}{x+2} b'\frac{x-3}{x-3}. Immultiplika \frac{7}{x-3} b'\frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Billi \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} u \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
Agħmel il-multiplikazzjonijiet fi 2\left(x-3\right)-7\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
Ikkombina termini simili f'2x-6-7x-14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-3 b'kull terminu ta' x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
Ikkombina 2x u -3x biex tikseb -x.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Issimplifika.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Immultiplika x^{2}-x^{1}-6 b'-5x^{0}.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Immultiplika -5x^{1}-20 b'2x^{1}-x^{0}.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Issimplifika.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
Ikkombina termini simili.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.