Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x u x+1 huwa x\left(x+1\right). Immultiplika \frac{2}{x} b'\frac{x+1}{x+1}. Immultiplika \frac{5}{x+1} b'\frac{x}{x}.
\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x}
Billi \frac{2\left(x+1\right)}{x\left(x+1\right)} u \frac{5x}{x\left(x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x}
Agħmel il-multiplikazzjonijiet fi 2\left(x+1\right)+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x}
Ikkombina termini simili f'2x+2+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+1\right) u x huwa x\left(x+1\right). Immultiplika \frac{4}{x} b'\frac{x+1}{x+1}.
\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)}
Billi \frac{7x+2}{x\left(x+1\right)} u \frac{4\left(x+1\right)}{x\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{7x+2-4x-4}{x\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 7x+2-4\left(x+1\right).
\frac{3x-2}{x\left(x+1\right)}
Ikkombina termini simili f'7x+2-4x-4.
\frac{3x-2}{x^{2}+x}
Espandi x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x u x+1 huwa x\left(x+1\right). Immultiplika \frac{2}{x} b'\frac{x+1}{x+1}. Immultiplika \frac{5}{x+1} b'\frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x})
Billi \frac{2\left(x+1\right)}{x\left(x+1\right)} u \frac{5x}{x\left(x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x})
Agħmel il-multiplikazzjonijiet fi 2\left(x+1\right)+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x})
Ikkombina termini simili f'2x+2+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x\left(x+1\right) u x huwa x\left(x+1\right). Immultiplika \frac{4}{x} b'\frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)})
Billi \frac{7x+2}{x\left(x+1\right)} u \frac{4\left(x+1\right)}{x\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4x-4}{x\left(x+1\right)})
Agħmel il-multiplikazzjonijiet fi 7x+2-4\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x\left(x+1\right)})
Ikkombina termini simili f'7x+2-4x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x^{2}+x})
Uża l-propjetà distributtiva biex timmultiplika x b'x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-2)-\left(3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{1-1}-\left(3x^{1}-2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Issimplifika.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Immultiplika x^{2}+x^{1} b'3x^{0}.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}x^{0}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Immultiplika 3x^{1}-2 b'2x^{1}+x^{0}.
\frac{3x^{2}+3x^{1}-\left(3\times 2x^{1+1}+3x^{1}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{3x^{2}+3x^{1}-\left(6x^{2}+3x^{1}-4x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Issimplifika.
\frac{-3x^{2}+4x^{1}+2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Ikkombina termini simili.
\frac{-3x^{2}+4x+2x^{0}}{\left(x^{2}+x\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-3x^{2}+4x+2\times 1}{\left(x^{2}+x\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{-3x^{2}+4x+2}{\left(x^{2}+x\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.