Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(2-y\right)^{2} u y^{2} huwa y^{2}\left(-y+2\right)^{2}. Immultiplika \frac{-1}{\left(2-y\right)^{2}} b'\frac{y^{2}}{y^{2}}. Immultiplika \frac{1}{y^{2}} b'\frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Billi \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} u \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Agħmel il-multiplikazzjonijiet fi -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Ikkombina termini simili f'-y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Espandi y^{2}\left(-y+2\right)^{2}.
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(2-y\right)^{2} u y^{2} huwa y^{2}\left(-y+2\right)^{2}. Immultiplika \frac{-1}{\left(2-y\right)^{2}} b'\frac{y^{2}}{y^{2}}. Immultiplika \frac{1}{y^{2}} b'\frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Billi \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} u \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Agħmel il-multiplikazzjonijiet fi -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Ikkombina termini simili f'-y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Espandi y^{2}\left(-y+2\right)^{2}.