Solvi għal x
x = \frac{\sqrt{160221897609} - 10397}{25000} \approx 15.595211036
x=\frac{-\sqrt{160221897609}-10397}{25000}\approx -16.426971036
Graff
Kwizz
Quadratic Equation
5 problemi simili għal:
\frac{ { x }^{ 2 } }{ 308-x } = 83176 \times { 10 }^{ -5 }
Sehem
Ikkupjat fuq il-klibbord
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Il-varjabbli x ma jistax ikun ugwali għal 308 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'-x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Ikkalkula 10 bil-power ta' -5 u tikseb \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Immultiplika 83176 u \frac{1}{100000} biex tikseb \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Uża l-propjetà distributtiva biex timmultiplika \frac{10397}{12500} b'-x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Żid \frac{10397}{12500}x maż-żewġ naħat.
x^{2}+\frac{10397}{12500}x-\frac{800569}{3125}=0
Naqqas \frac{800569}{3125} miż-żewġ naħat.
x=\frac{-\frac{10397}{12500}±\sqrt{\left(\frac{10397}{12500}\right)^{2}-4\left(-\frac{800569}{3125}\right)}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, \frac{10397}{12500} għal b, u -\frac{800569}{3125} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}-4\left(-\frac{800569}{3125}\right)}}{2}
Ikkwadra \frac{10397}{12500} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}+\frac{3202276}{3125}}}{2}
Immultiplika -4 b'-\frac{800569}{3125}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{160221897609}{156250000}}}{2}
Żid \frac{108097609}{156250000} ma' \frac{3202276}{3125} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2}
Ħu l-għerq kwadrat ta' \frac{160221897609}{156250000}.
x=\frac{\sqrt{160221897609}-10397}{2\times 12500}
Issa solvi l-ekwazzjoni x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} fejn ± hija plus. Żid -\frac{10397}{12500} ma' \frac{\sqrt{160221897609}}{12500}.
x=\frac{\sqrt{160221897609}-10397}{25000}
Iddividi \frac{-10397+\sqrt{160221897609}}{12500} b'2.
x=\frac{-\sqrt{160221897609}-10397}{2\times 12500}
Issa solvi l-ekwazzjoni x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} fejn ± hija minus. Naqqas \frac{\sqrt{160221897609}}{12500} minn -\frac{10397}{12500}.
x=\frac{-\sqrt{160221897609}-10397}{25000}
Iddividi \frac{-10397-\sqrt{160221897609}}{12500} b'2.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
L-ekwazzjoni issa solvuta.
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Il-varjabbli x ma jistax ikun ugwali għal 308 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'-x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Ikkalkula 10 bil-power ta' -5 u tikseb \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Immultiplika 83176 u \frac{1}{100000} biex tikseb \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Uża l-propjetà distributtiva biex timmultiplika \frac{10397}{12500} b'-x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Żid \frac{10397}{12500}x maż-żewġ naħat.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\frac{800569}{3125}+\left(\frac{10397}{25000}\right)^{2}
Iddividi \frac{10397}{12500}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{10397}{25000}. Imbagħad żid il-kwadru ta' \frac{10397}{25000} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{800569}{3125}+\frac{108097609}{625000000}
Ikkwadra \frac{10397}{25000} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{160221897609}{625000000}
Żid \frac{800569}{3125} ma' \frac{108097609}{625000000} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{160221897609}{625000000}
Fattur x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{160221897609}{625000000}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{10397}{25000}=\frac{\sqrt{160221897609}}{25000} x+\frac{10397}{25000}=-\frac{\sqrt{160221897609}}{25000}
Issimplifika.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Naqqas \frac{10397}{25000} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}