Solvi għal t
t=\frac{16}{35}\approx 0.457142857
Sehem
Ikkupjat fuq il-klibbord
17\left(20^{2}+\left(15t\right)^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Il-varjabbli t ma jistax ikun ugwali għal 0 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'1020t, l-inqas denominatur komuni ta' 60t,-102t.
17\left(400+\left(15t\right)^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Ikkalkula 20 bil-power ta' 2 u tikseb 400.
17\left(400+15^{2}t^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Espandi \left(15t\right)^{2}.
17\left(400+225t^{2}-\left(12+15t\right)^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Ikkalkula 15 bil-power ta' 2 u tikseb 225.
17\left(400+225t^{2}-\left(144+360t+225t^{2}\right)\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(12+15t\right)^{2}.
17\left(400+225t^{2}-144-360t-225t^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Biex issib l-oppost ta' 144+360t+225t^{2}, sib l-oppost ta' kull terminu.
17\left(256+225t^{2}-360t-225t^{2}\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Naqqas 144 minn 400 biex tikseb 256.
17\left(256-360t\right)=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Ikkombina 225t^{2} u -225t^{2} biex tikseb 0.
4352-6120t=-10\left(34^{2}+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Uża l-propjetà distributtiva biex timmultiplika 17 b'256-360t.
4352-6120t=-10\left(1156+\left(15t\right)^{2}-\left(30+15t\right)^{2}\right)
Ikkalkula 34 bil-power ta' 2 u tikseb 1156.
4352-6120t=-10\left(1156+15^{2}t^{2}-\left(30+15t\right)^{2}\right)
Espandi \left(15t\right)^{2}.
4352-6120t=-10\left(1156+225t^{2}-\left(30+15t\right)^{2}\right)
Ikkalkula 15 bil-power ta' 2 u tikseb 225.
4352-6120t=-10\left(1156+225t^{2}-\left(900+900t+225t^{2}\right)\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(30+15t\right)^{2}.
4352-6120t=-10\left(1156+225t^{2}-900-900t-225t^{2}\right)
Biex issib l-oppost ta' 900+900t+225t^{2}, sib l-oppost ta' kull terminu.
4352-6120t=-10\left(256+225t^{2}-900t-225t^{2}\right)
Naqqas 900 minn 1156 biex tikseb 256.
4352-6120t=-10\left(256-900t\right)
Ikkombina 225t^{2} u -225t^{2} biex tikseb 0.
4352-6120t=-2560+9000t
Uża l-propjetà distributtiva biex timmultiplika -10 b'256-900t.
4352-6120t-9000t=-2560
Naqqas 9000t miż-żewġ naħat.
4352-15120t=-2560
Ikkombina -6120t u -9000t biex tikseb -15120t.
-15120t=-2560-4352
Naqqas 4352 miż-żewġ naħat.
-15120t=-6912
Naqqas 4352 minn -2560 biex tikseb -6912.
t=\frac{-6912}{-15120}
Iddividi ż-żewġ naħat b'-15120.
t=\frac{16}{35}
Naqqas il-frazzjoni \frac{-6912}{-15120} għat-termini l-aktar baxxi billi testratta u tikkanċella barra -432.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}