Evalwa
\sqrt{3}\approx 1.732050808
Espandi
\sqrt{3} = 1.732050808
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ikkombina \sqrt{3} u \sqrt{3} biex tikseb 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Naqqas 1 minn 1 biex tikseb 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Espandi \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Immultiplika 4 u 3 biex tikseb 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Żid 3 u 1 biex tikseb 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Żid 3 u 1 biex tikseb 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Biex issib l-oppost ta' 4-2\sqrt{3}, sib l-oppost ta' kull terminu.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Naqqas 4 minn 4 biex tikseb 0.
\frac{12}{4\sqrt{3}}
Ikkombina 2\sqrt{3} u 2\sqrt{3} biex tikseb 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{12}{4\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Il-kwadrat ta' \sqrt{3} huwa 3.
\sqrt{3}
Annulla 3\times 4 fin-numeratur u d-denominatur.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ikkombina \sqrt{3} u \sqrt{3} biex tikseb 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Naqqas 1 minn 1 biex tikseb 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Espandi \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Immultiplika 4 u 3 biex tikseb 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Żid 3 u 1 biex tikseb 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Żid 3 u 1 biex tikseb 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Biex issib l-oppost ta' 4-2\sqrt{3}, sib l-oppost ta' kull terminu.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Naqqas 4 minn 4 biex tikseb 0.
\frac{12}{4\sqrt{3}}
Ikkombina 2\sqrt{3} u 2\sqrt{3} biex tikseb 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{12}{4\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Il-kwadrat ta' \sqrt{3} huwa 3.
\sqrt{3}
Annulla 3\times 4 fin-numeratur u d-denominatur.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}