Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{4\sqrt{2}-\left(\sqrt{2}\right)^{2}}{2\left(\sqrt{2}+1\right)}
Uża l-propjetà distributtiva biex timmultiplika \sqrt{2} b'4-\sqrt{2}.
\frac{4\sqrt{2}-2}{2\left(\sqrt{2}+1\right)}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{4\sqrt{2}-2}{2\sqrt{2}+2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'\sqrt{2}+1.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right)}
Irrazzjonalizza d-denominatur tal-\frac{4\sqrt{2}-2}{2\sqrt{2}+2} billi timmultiplika in-numeratur u d-denominatur mill-2\sqrt{2}-2.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}\right)^{2}-2^{2}}
Ikkunsidra li \left(2\sqrt{2}+2\right)\left(2\sqrt{2}-2\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{2^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
Espandi \left(2\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\left(\sqrt{2}\right)^{2}-2^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4\times 2-2^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-2^{2}}
Immultiplika 4 u 2 biex tikseb 8.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{8-4}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\left(4\sqrt{2}-2\right)\left(2\sqrt{2}-2\right)}{4}
Naqqas 4 minn 8 biex tikseb 4.
\frac{8\left(\sqrt{2}\right)^{2}-8\sqrt{2}-4\sqrt{2}+4}{4}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 4\sqrt{2}-2 b'kull terminu ta' 2\sqrt{2}-2.
\frac{8\times 2-8\sqrt{2}-4\sqrt{2}+4}{4}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{16-8\sqrt{2}-4\sqrt{2}+4}{4}
Immultiplika 8 u 2 biex tikseb 16.
\frac{16-12\sqrt{2}+4}{4}
Ikkombina -8\sqrt{2} u -4\sqrt{2} biex tikseb -12\sqrt{2}.
\frac{20-12\sqrt{2}}{4}
Żid 16 u 4 biex tikseb 20.
5-3\sqrt{2}
Iddividi kull terminu ta' 20-12\sqrt{2} b'4 biex tikseb5-3\sqrt{2}.