Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Parti Reali
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i}
Immutiplika in-numri kumplessi 130+5915i u 30+1365i bl-istess mod kif timmultiplika binomials.
\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i}
Skont id-definizzjoni, i^{2} huwa -1.
\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i}
Agħmel il-multiplikazzjonijiet fi 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i}
Ikkombina l-partijiet reali u immaġinarji f'3900+177450i+177450i-8073975.
\frac{-8070075+354900i}{130+5915i+30+1365i}
Agħmel l-addizzjonijiet fi 3900-8073975+\left(177450+177450\right)i.
\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i}
Ikkombina l-partijiet reali u immaġinarji f'130+5915i+30+1365i.
\frac{-8070075+354900i}{160+7280i}
Agħmel l-addizzjonijiet fi 130+30+\left(5915+1365\right)i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)}
Immultiplika kemm in-numeratur u d-denominatur bil-konjugat kumpless tad-denominatur, 160-7280i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}}
Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000}
Skont id-definizzjoni, i^{2} huwa -1. Ikkalkula d-denominatur.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000}
Immutiplika in-numri kumplessi -8070075+354900i u 160-7280i bl-istess mod kif timmultiplika binomials.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000}
Skont id-definizzjoni, i^{2} huwa -1.
\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000}
Agħmel il-multiplikazzjonijiet fi -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000}
Ikkombina l-partijiet reali u immaġinarji f'-1291212000+58750146000i+56784000i+2583672000.
\frac{1292460000+58806930000i}{53024000}
Agħmel l-addizzjonijiet fi -1291212000+2583672000+\left(58750146000+56784000\right)i.
\frac{195}{8}+\frac{17745}{16}i
Iddividi 1292460000+58806930000i b'53024000 biex tikseb\frac{195}{8}+\frac{17745}{16}i.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i})
Immutiplika in-numri kumplessi 130+5915i u 30+1365i bl-istess mod kif timmultiplika binomials.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i})
Skont id-definizzjoni, i^{2} huwa -1.
Re(\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i})
Agħmel il-multiplikazzjonijiet fi 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
Re(\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i})
Ikkombina l-partijiet reali u immaġinarji f'3900+177450i+177450i-8073975.
Re(\frac{-8070075+354900i}{130+5915i+30+1365i})
Agħmel l-addizzjonijiet fi 3900-8073975+\left(177450+177450\right)i.
Re(\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i})
Ikkombina l-partijiet reali u immaġinarji f'130+5915i+30+1365i.
Re(\frac{-8070075+354900i}{160+7280i})
Agħmel l-addizzjonijiet fi 130+30+\left(5915+1365\right)i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)})
Immultiplika kemm in-numeratur u d-denominatur ta' \frac{-8070075+354900i}{160+7280i} bil-konjugat kumpless tad-denominatur, 160-7280i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}})
Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000})
Skont id-definizzjoni, i^{2} huwa -1. Ikkalkula d-denominatur.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000})
Immutiplika in-numri kumplessi -8070075+354900i u 160-7280i bl-istess mod kif timmultiplika binomials.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000})
Skont id-definizzjoni, i^{2} huwa -1.
Re(\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000})
Agħmel il-multiplikazzjonijiet fi -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
Re(\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000})
Ikkombina l-partijiet reali u immaġinarji f'-1291212000+58750146000i+56784000i+2583672000.
Re(\frac{1292460000+58806930000i}{53024000})
Agħmel l-addizzjonijiet fi -1291212000+2583672000+\left(58750146000+56784000\right)i.
Re(\frac{195}{8}+\frac{17745}{16}i)
Iddividi 1292460000+58806930000i b'53024000 biex tikseb\frac{195}{8}+\frac{17745}{16}i.
\frac{195}{8}
Il-parti reali ta' \frac{195}{8}+\frac{17745}{16}i hija \frac{195}{8}.