Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u x+4 huwa \left(x+3\right)\left(x+4\right). Immultiplika \frac{x+4}{x+3} b'\frac{x+4}{x+4}. Immultiplika \frac{x-3}{x+4} b'\frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Billi \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} u \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Agħmel il-multiplikazzjonijiet fi \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ikkombina termini simili f'x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Iddividi \frac{8x+25}{\left(x+3\right)\left(x+4\right)} b'\frac{14}{x^{2}+7x+12} billi timmultiplika \frac{8x+25}{\left(x+3\right)\left(x+4\right)} bir-reċiproku ta' \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{8x+25}{14}
Annulla \left(x+3\right)\left(x+4\right) fin-numeratur u d-denominatur.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u x+4 huwa \left(x+3\right)\left(x+4\right). Immultiplika \frac{x+4}{x+3} b'\frac{x+4}{x+4}. Immultiplika \frac{x-3}{x+4} b'\frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Billi \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} u \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Agħmel il-multiplikazzjonijiet fi \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ikkombina termini simili f'x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Iddividi \frac{8x+25}{\left(x+3\right)\left(x+4\right)} b'\frac{14}{x^{2}+7x+12} billi timmultiplika \frac{8x+25}{\left(x+3\right)\left(x+4\right)} bir-reċiproku ta' \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{8x+25}{14}
Annulla \left(x+3\right)\left(x+4\right) fin-numeratur u d-denominatur.