Evalwa
\frac{4x}{7}+\frac{25}{14}
Espandi
\frac{4x}{7}+\frac{25}{14}
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u x+4 huwa \left(x+3\right)\left(x+4\right). Immultiplika \frac{x+4}{x+3} b'\frac{x+4}{x+4}. Immultiplika \frac{x-3}{x+4} b'\frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Billi \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} u \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Agħmel il-multiplikazzjonijiet fi \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ikkombina termini simili f'x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Iddividi \frac{8x+25}{\left(x+3\right)\left(x+4\right)} b'\frac{14}{x^{2}+7x+12} billi timmultiplika \frac{8x+25}{\left(x+3\right)\left(x+4\right)} bir-reċiproku ta' \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{8x+25}{14}
Annulla \left(x+3\right)\left(x+4\right) fin-numeratur u d-denominatur.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+3 u x+4 huwa \left(x+3\right)\left(x+4\right). Immultiplika \frac{x+4}{x+3} b'\frac{x+4}{x+4}. Immultiplika \frac{x-3}{x+4} b'\frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Billi \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} u \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Agħmel il-multiplikazzjonijiet fi \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ikkombina termini simili f'x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Iddividi \frac{8x+25}{\left(x+3\right)\left(x+4\right)} b'\frac{14}{x^{2}+7x+12} billi timmultiplika \frac{8x+25}{\left(x+3\right)\left(x+4\right)} bir-reċiproku ta' \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{8x+25}{14}
Annulla \left(x+3\right)\left(x+4\right) fin-numeratur u d-denominatur.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}