Evalwa
\frac{\left(y-2\right)\left(y+4\right)}{y^{2}+3y-175}
Espandi
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika y-1 b'\frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Billi \frac{\left(y-1\right)\left(y+3\right)}{y+3} u \frac{5}{y+3} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Agħmel il-multiplikazzjonijiet fi \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Ikkombina termini simili f'y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Esprimi 5\times \frac{-35}{y+3} bħala frazzjoni waħda.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika y b'\frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Billi \frac{y\left(y+3\right)}{y+3} u \frac{5\left(-35\right)}{y+3} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Agħmel il-multiplikazzjonijiet fi y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Iddividi \frac{y^{2}+2y-8}{y+3} b'\frac{y^{2}+3y-175}{y+3} billi timmultiplika \frac{y^{2}+2y-8}{y+3} bir-reċiproku ta' \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Annulla y+3 fin-numeratur u d-denominatur.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika y-1 b'\frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Billi \frac{\left(y-1\right)\left(y+3\right)}{y+3} u \frac{5}{y+3} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Agħmel il-multiplikazzjonijiet fi \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Ikkombina termini simili f'y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Esprimi 5\times \frac{-35}{y+3} bħala frazzjoni waħda.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika y b'\frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Billi \frac{y\left(y+3\right)}{y+3} u \frac{5\left(-35\right)}{y+3} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Agħmel il-multiplikazzjonijiet fi y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Iddividi \frac{y^{2}+2y-8}{y+3} b'\frac{y^{2}+3y-175}{y+3} billi timmultiplika \frac{y^{2}+2y-8}{y+3} bir-reċiproku ta' \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Annulla y+3 fin-numeratur u d-denominatur.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}