Solvi għal x
x = \frac{43 \sqrt{2} - 7}{2} \approx 26.905591591
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{x-\frac{95}{2}+\frac{34}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Ikkonverti 17 fi frazzjoni \frac{34}{2}.
\frac{x+\frac{-95+34}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Billi -\frac{95}{2} u \frac{34}{2} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{x-\frac{61}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Żid -95 u 34 biex tikseb -61.
\frac{x-\frac{61}{2}}{\frac{25-9\sqrt{2}}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Żid 8 u 17 biex tikseb 25.
\frac{\left(x-\frac{61}{2}\right)\times 2}{25-9\sqrt{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Iddividi x-\frac{61}{2} b'\frac{25-9\sqrt{2}}{2} billi timmultiplika x-\frac{61}{2} bir-reċiproku ta' \frac{25-9\sqrt{2}}{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{\left(25-9\sqrt{2}\right)\left(25+9\sqrt{2}\right)}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Irrazzjonalizza d-denominatur tal-\frac{\left(x-\frac{61}{2}\right)\times 2}{25-9\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-25+9\sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{25^{2}-\left(-9\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Ikkunsidra li \left(25-9\sqrt{2}\right)\left(25+9\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-\left(-9\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Ikkalkula 25 bil-power ta' 2 u tikseb 625.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-\left(-9\right)^{2}\left(\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Espandi \left(-9\sqrt{2}\right)^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-81\left(\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Ikkalkula -9 bil-power ta' 2 u tikseb 81.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-81\times 2}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-162}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Immultiplika 81 u 2 biex tikseb 162.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Naqqas 162 minn 625 biex tikseb 463.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{\left(-3-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}
Irrazzjonalizza d-denominatur tal-\frac{4-\sqrt{2}}{-3-\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill--3+\sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{\left(-3\right)^{2}-\left(\sqrt{2}\right)^{2}}
Ikkunsidra li \left(-3-\sqrt{2}\right)\left(-3+\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{9-2}
Ikkwadra -3. Ikkwadra \sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Naqqas 2 minn 9 biex tikseb 7.
\frac{\left(2x-\frac{61}{2}\times 2\right)\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Uża l-propjetà distributtiva biex timmultiplika x-\frac{61}{2} b'2.
\frac{\left(2x-61\right)\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Annulla 2 u 2.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x-61 b'kull terminu ta' 25+9\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+4\sqrt{2}+3\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 4-\sqrt{2} b'kull terminu ta' -3+\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+7\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Ikkombina 4\sqrt{2} u 3\sqrt{2} biex tikseb 7\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+7\sqrt{2}-2}{7}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-14+7\sqrt{2}}{7}
Naqqas 2 minn -12 biex tikseb -14.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=-2+\sqrt{2}
Iddividi kull terminu ta' -14+7\sqrt{2} b'7 biex tikseb-2+\sqrt{2}.
50x+18\sqrt{2}x-1525-549\sqrt{2}=-926+463\sqrt{2}
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'463.
50x+18\sqrt{2}x-549\sqrt{2}=-926+463\sqrt{2}+1525
Żid 1525 maż-żewġ naħat.
50x+18\sqrt{2}x-549\sqrt{2}=599+463\sqrt{2}
Żid -926 u 1525 biex tikseb 599.
50x+18\sqrt{2}x=599+463\sqrt{2}+549\sqrt{2}
Żid 549\sqrt{2} maż-żewġ naħat.
50x+18\sqrt{2}x=599+1012\sqrt{2}
Ikkombina 463\sqrt{2} u 549\sqrt{2} biex tikseb 1012\sqrt{2}.
\left(50+18\sqrt{2}\right)x=599+1012\sqrt{2}
Ikkombina t-termini kollha li fihom x.
\left(18\sqrt{2}+50\right)x=1012\sqrt{2}+599
L-ekwazzjoni hija f'forma standard.
\frac{\left(18\sqrt{2}+50\right)x}{18\sqrt{2}+50}=\frac{1012\sqrt{2}+599}{18\sqrt{2}+50}
Iddividi ż-żewġ naħat b'50+18\sqrt{2}.
x=\frac{1012\sqrt{2}+599}{18\sqrt{2}+50}
Meta tiddividi b'50+18\sqrt{2} titneħħa l-multiplikazzjoni b'50+18\sqrt{2}.
x=\frac{43\sqrt{2}-7}{2}
Iddividi 599+1012\sqrt{2} b'50+18\sqrt{2}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}