Solvi għal x
x = \frac{\sqrt{321} - 7}{2} \approx 5.458236434
x=\frac{-\sqrt{321}-7}{2}\approx -12.458236434
Graff
Sehem
Ikkupjat fuq il-klibbord
x\left(x+7\right)=34\times 2
Immultiplika ż-żewġ naħat b'2.
x^{2}+7x=34\times 2
Uża l-propjetà distributtiva biex timmultiplika x b'x+7.
x^{2}+7x=68
Immultiplika 34 u 2 biex tikseb 68.
x^{2}+7x-68=0
Naqqas 68 miż-żewġ naħat.
x=\frac{-7±\sqrt{7^{2}-4\left(-68\right)}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, 7 għal b, u -68 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-68\right)}}{2}
Ikkwadra 7.
x=\frac{-7±\sqrt{49+272}}{2}
Immultiplika -4 b'-68.
x=\frac{-7±\sqrt{321}}{2}
Żid 49 ma' 272.
x=\frac{\sqrt{321}-7}{2}
Issa solvi l-ekwazzjoni x=\frac{-7±\sqrt{321}}{2} fejn ± hija plus. Żid -7 ma' \sqrt{321}.
x=\frac{-\sqrt{321}-7}{2}
Issa solvi l-ekwazzjoni x=\frac{-7±\sqrt{321}}{2} fejn ± hija minus. Naqqas \sqrt{321} minn -7.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
L-ekwazzjoni issa solvuta.
x\left(x+7\right)=34\times 2
Immultiplika ż-żewġ naħat b'2.
x^{2}+7x=34\times 2
Uża l-propjetà distributtiva biex timmultiplika x b'x+7.
x^{2}+7x=68
Immultiplika 34 u 2 biex tikseb 68.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=68+\left(\frac{7}{2}\right)^{2}
Iddividi 7, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{7}{2}. Imbagħad żid il-kwadru ta' \frac{7}{2} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+7x+\frac{49}{4}=68+\frac{49}{4}
Ikkwadra \frac{7}{2} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+7x+\frac{49}{4}=\frac{321}{4}
Żid 68 ma' \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{321}{4}
Fattur x^{2}+7x+\frac{49}{4}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{321}{4}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{7}{2}=\frac{\sqrt{321}}{2} x+\frac{7}{2}=-\frac{\sqrt{321}}{2}
Issimplifika.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
Naqqas \frac{7}{2} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}