Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
Iffattura x^{2}+10x+24. Iffattura x^{2}+6x+8.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+4\right)\left(x+6\right) u \left(x+2\right)\left(x+4\right) huwa \left(x+2\right)\left(x+4\right)\left(x+6\right). Immultiplika \frac{x}{\left(x+4\right)\left(x+6\right)} b'\frac{x+2}{x+2}. Immultiplika \frac{4}{\left(x+2\right)\left(x+4\right)} b'\frac{x+6}{x+6}.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Billi \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} u \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Agħmel il-multiplikazzjonijiet fi x\left(x+2\right)-4\left(x+6\right).
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Ikkombina termini simili f'x^{2}+2x-4x-24.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
Annulla x+4 fin-numeratur u d-denominatur.
\frac{x-6}{x^{2}+8x+12}
Espandi \left(x+2\right)\left(x+6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
Iffattura x^{2}+10x+24. Iffattura x^{2}+6x+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+4\right)\left(x+6\right) u \left(x+2\right)\left(x+4\right) huwa \left(x+2\right)\left(x+4\right)\left(x+6\right). Immultiplika \frac{x}{\left(x+4\right)\left(x+6\right)} b'\frac{x+2}{x+2}. Immultiplika \frac{4}{\left(x+2\right)\left(x+4\right)} b'\frac{x+6}{x+6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Billi \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} u \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Agħmel il-multiplikazzjonijiet fi x\left(x+2\right)-4\left(x+6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Ikkombina termini simili f'x^{2}+2x-4x-24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
Annulla x+4 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
Uża l-propjetà distributtiva biex timmultiplika x+2 b'x+6 u kkombina termini simili.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Issimplifika.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Immultiplika x^{2}+8x^{1}+12 b'x^{0}.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Immultiplika x^{1}-6 b'2x^{1}+8x^{0}.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Issimplifika.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
Ikkombina termini simili.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.