Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{x\times 14}{7\left(x+9\right)}
Immultiplika \frac{x}{7} b'\frac{14}{x+9} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{2x}{x+9}
Annulla 7 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 14}{7\left(x+9\right)})
Immultiplika \frac{x}{7} b'\frac{14}{x+9} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x+9})
Annulla 7 fin-numeratur u d-denominatur.
\frac{\left(x^{1}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+9)}{\left(x^{1}+9\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{1}+9\right)\times 2x^{1-1}-2x^{1}x^{1-1}}{\left(x^{1}+9\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{1}+9\right)\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}+9\right)^{2}}
Agħmel l-aritmetika.
\frac{x^{1}\times 2x^{0}+9\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}+9\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{2x^{1}+9\times 2x^{0}-2x^{1}}{\left(x^{1}+9\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{2x^{1}+18x^{0}-2x^{1}}{\left(x^{1}+9\right)^{2}}
Agħmel l-aritmetika.
\frac{\left(2-2\right)x^{1}+18x^{0}}{\left(x^{1}+9\right)^{2}}
Ikkombina termini simili.
\frac{18x^{0}}{\left(x^{1}+9\right)^{2}}
Naqqas 2 minn 2.
\frac{18x^{0}}{\left(x+9\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{18\times 1}{\left(x+9\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{18}{\left(x+9\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.