Evalwa
x
Iddifferenzja w.r.t. x
1
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10}
Iddividi \frac{x^{2}-8x+15}{5x^{2}+10x} b'\frac{x^{2}-9}{10x^{2}} billi timmultiplika \frac{x^{2}-8x+15}{5x^{2}+10x} bir-reċiproku ta' \frac{x^{2}-9}{10x^{2}}.
\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10}
Annulla 5x\left(x-3\right) fin-numeratur u d-denominatur.
\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}
Immultiplika \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} b'\frac{x^{2}+5x+6}{2x-10} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
x
Annulla 2\left(x-5\right)\left(x+2\right)\left(x+3\right) fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}\times \frac{x^{2}+5x+6}{2x-10})
Iddividi \frac{x^{2}-8x+15}{5x^{2}+10x} b'\frac{x^{2}-9}{10x^{2}} billi timmultiplika \frac{x^{2}-8x+15}{5x^{2}+10x} bir-reċiproku ta' \frac{x^{2}-9}{10x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10\left(x-5\right)\left(x-3\right)x^{2}}{5x\left(x-3\right)\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(x^{2}-8x+15\right)\times 10x^{2}}{\left(5x^{2}+10x\right)\left(x^{2}-9\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)}\times \frac{x^{2}+5x+6}{2x-10})
Annulla 5x\left(x-3\right) fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)})
Immultiplika \frac{2x\left(x-5\right)}{\left(x+2\right)\left(x+3\right)} b'\frac{x^{2}+5x+6}{2x-10} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x-5\right)\left(x+2\right)\left(x+3\right)}{2\left(x-5\right)\left(x+2\right)\left(x+3\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{2x\left(x-5\right)\left(x^{2}+5x+6\right)}{\left(x+2\right)\left(x+3\right)\left(2x-10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Annulla 2\left(x-5\right)\left(x+2\right)\left(x+3\right) fin-numeratur u d-denominatur.
x^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
x^{0}
Naqqas 1 minn 1.
1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}