Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Iffattura x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+y\right)\left(x-y\right) u x+y huwa \left(x+y\right)\left(x-y\right). Immultiplika \frac{x}{x+y} b'\frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Billi \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} u \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Agħmel il-multiplikazzjonijiet fi x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ikkombina termini simili f'x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Iffattura 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+y\right)\left(x-y\right) u 2\left(x-y\right) huwa 2\left(x+y\right)\left(x-y\right). Immultiplika \frac{xy}{\left(x+y\right)\left(x-y\right)} b'\frac{2}{2}. Immultiplika \frac{y}{2\left(x-y\right)} b'\frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Billi \frac{2xy}{2\left(x+y\right)\left(x-y\right)} u \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Agħmel il-multiplikazzjonijiet fi 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ikkombina termini simili f'2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Iffattura 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Billi \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} u \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Ikkombina termini simili f'y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Espandi 2\left(x+y\right)\left(x-y\right).