Solvi għal x
x = \frac{20000 \sqrt{950625000130} + 32500000000}{12999999999} \approx 4
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}\approx 1
Graff
Sehem
Ikkupjat fuq il-klibbord
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri 1,4 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Ikkalkula 10 bil-power ta' 9 u tikseb 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Immultiplika 13 u 1000000000 biex tikseb 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Uża l-propjetà distributtiva biex timmultiplika 13000000000 b'x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Uża l-propjetà distributtiva biex timmultiplika 13000000000x-52000000000 b'x-1 u kkombina termini simili.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Naqqas 13000000000x^{2} miż-żewġ naħat.
-12999999999x^{2}=-65000000000x+52000000000
Ikkombina x^{2} u -13000000000x^{2} biex tikseb -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Żid 65000000000x maż-żewġ naħat.
-12999999999x^{2}+65000000000x-52000000000=0
Naqqas 52000000000 miż-żewġ naħat.
x=\frac{-65000000000±\sqrt{65000000000^{2}-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -12999999999 għal a, 65000000000 għal b, u -52000000000 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65000000000±\sqrt{4225000000000000000000-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Ikkwadra 65000000000.
x=\frac{-65000000000±\sqrt{4225000000000000000000+51999999996\left(-52000000000\right)}}{2\left(-12999999999\right)}
Immultiplika -4 b'-12999999999.
x=\frac{-65000000000±\sqrt{4225000000000000000000-2703999999792000000000}}{2\left(-12999999999\right)}
Immultiplika 51999999996 b'-52000000000.
x=\frac{-65000000000±\sqrt{1521000000208000000000}}{2\left(-12999999999\right)}
Żid 4225000000000000000000 ma' -2703999999792000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{2\left(-12999999999\right)}
Ħu l-għerq kwadrat ta' 1521000000208000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998}
Immultiplika 2 b'-12999999999.
x=\frac{40000\sqrt{950625000130}-65000000000}{-25999999998}
Issa solvi l-ekwazzjoni x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} fejn ± hija plus. Żid -65000000000 ma' 40000\sqrt{950625000130}.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Iddividi -65000000000+40000\sqrt{950625000130} b'-25999999998.
x=\frac{-40000\sqrt{950625000130}-65000000000}{-25999999998}
Issa solvi l-ekwazzjoni x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} fejn ± hija minus. Naqqas 40000\sqrt{950625000130} minn -65000000000.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Iddividi -65000000000-40000\sqrt{950625000130} b'-25999999998.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999} x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
L-ekwazzjoni issa solvuta.
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri 1,4 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Ikkalkula 10 bil-power ta' 9 u tikseb 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Immultiplika 13 u 1000000000 biex tikseb 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Uża l-propjetà distributtiva biex timmultiplika 13000000000 b'x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Uża l-propjetà distributtiva biex timmultiplika 13000000000x-52000000000 b'x-1 u kkombina termini simili.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Naqqas 13000000000x^{2} miż-żewġ naħat.
-12999999999x^{2}=-65000000000x+52000000000
Ikkombina x^{2} u -13000000000x^{2} biex tikseb -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Żid 65000000000x maż-żewġ naħat.
\frac{-12999999999x^{2}+65000000000x}{-12999999999}=\frac{52000000000}{-12999999999}
Iddividi ż-żewġ naħat b'-12999999999.
x^{2}+\frac{65000000000}{-12999999999}x=\frac{52000000000}{-12999999999}
Meta tiddividi b'-12999999999 titneħħa l-multiplikazzjoni b'-12999999999.
x^{2}-\frac{65000000000}{12999999999}x=\frac{52000000000}{-12999999999}
Iddividi 65000000000 b'-12999999999.
x^{2}-\frac{65000000000}{12999999999}x=-\frac{52000000000}{12999999999}
Iddividi 52000000000 b'-12999999999.
x^{2}-\frac{65000000000}{12999999999}x+\left(-\frac{32500000000}{12999999999}\right)^{2}=-\frac{52000000000}{12999999999}+\left(-\frac{32500000000}{12999999999}\right)^{2}
Iddividi -\frac{65000000000}{12999999999}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{32500000000}{12999999999}. Imbagħad żid il-kwadru ta' -\frac{32500000000}{12999999999} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=-\frac{52000000000}{12999999999}+\frac{1056250000000000000000}{168999999974000000001}
Ikkwadra -\frac{32500000000}{12999999999} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=\frac{380250000052000000000}{168999999974000000001}
Żid -\frac{52000000000}{12999999999} ma' \frac{1056250000000000000000}{168999999974000000001} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{32500000000}{12999999999}\right)^{2}=\frac{380250000052000000000}{168999999974000000001}
Fattur x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32500000000}{12999999999}\right)^{2}}=\sqrt{\frac{380250000052000000000}{168999999974000000001}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{32500000000}{12999999999}=\frac{20000\sqrt{950625000130}}{12999999999} x-\frac{32500000000}{12999999999}=-\frac{20000\sqrt{950625000130}}{12999999999}
Issimplifika.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999} x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Żid \frac{32500000000}{12999999999} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}