Aqbeż għall-kontenut ewlieni
Solvi għal x (complex solution)
Tick mark Image
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

16\left(x+2\right)-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'64, l-inqas denominatur komuni ta' 4,64,2.
16x+32-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża l-propjetà distributtiva biex timmultiplika 16 b'x+2.
16x+32-\left(2-2x\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża l-propjetà distributtiva biex timmultiplika 2 b'1-x.
16x+32-\left(4-8x+4x^{2}\right)=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(2-2x\right)^{2}.
16x+32-4+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Biex issib l-oppost ta' 4-8x+4x^{2}, sib l-oppost ta' kull terminu.
16x+28+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Naqqas 4 minn 32 biex tikseb 28.
24x+28-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Ikkombina 16x u 8x biex tikseb 24x.
24x+28-4x^{2}=-64\times \frac{\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Biex tgħolli \frac{x+1}{4} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Esprimi -64\times \frac{\left(x+1\right)^{2}}{4^{2}} bħala frazzjoni waħda.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\times \frac{1}{2}x+32
Naqqas \frac{1}{2} minn 1 biex tikseb \frac{1}{2}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+32x+32
Immultiplika 64 u \frac{1}{2} biex tikseb 32.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+\frac{\left(32x+32\right)\times 4^{2}}{4^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 32x+32 b'\frac{4^{2}}{4^{2}}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}}{4^{2}}
Billi \frac{-64\left(x+1\right)^{2}}{4^{2}} u \frac{\left(32x+32\right)\times 4^{2}}{4^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
24x+28-4x^{2}=\frac{-64x^{2}-128x-64+512x+512}{4^{2}}
Agħmel il-multiplikazzjonijiet fi -64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{4^{2}}
Ikkombina termini simili f'-64x^{2}-128x-64+512x+512.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{16}
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
24x+28-4x^{2}=-4x^{2}+24x+28
Iddividi kull terminu ta' -64x^{2}+384x+448 b'16 biex tikseb-4x^{2}+24x+28.
24x+28-4x^{2}+4x^{2}=24x+28
Żid 4x^{2} maż-żewġ naħat.
24x+28=24x+28
Ikkombina -4x^{2} u 4x^{2} biex tikseb 0.
24x+28-24x=28
Naqqas 24x miż-żewġ naħat.
28=28
Ikkombina 24x u -24x biex tikseb 0.
\text{true}
Qabbel 28 u 28.
x\in \mathrm{C}
Din hija vera għal kwalunkwe x.
16\left(x+2\right)-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'64, l-inqas denominatur komuni ta' 4,64,2.
16x+32-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża l-propjetà distributtiva biex timmultiplika 16 b'x+2.
16x+32-\left(2-2x\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża l-propjetà distributtiva biex timmultiplika 2 b'1-x.
16x+32-\left(4-8x+4x^{2}\right)=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(2-2x\right)^{2}.
16x+32-4+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Biex issib l-oppost ta' 4-8x+4x^{2}, sib l-oppost ta' kull terminu.
16x+28+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Naqqas 4 minn 32 biex tikseb 28.
24x+28-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Ikkombina 16x u 8x biex tikseb 24x.
24x+28-4x^{2}=-64\times \frac{\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Biex tgħolli \frac{x+1}{4} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Esprimi -64\times \frac{\left(x+1\right)^{2}}{4^{2}} bħala frazzjoni waħda.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\times \frac{1}{2}x+32
Naqqas \frac{1}{2} minn 1 biex tikseb \frac{1}{2}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+32x+32
Immultiplika 64 u \frac{1}{2} biex tikseb 32.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+\frac{\left(32x+32\right)\times 4^{2}}{4^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 32x+32 b'\frac{4^{2}}{4^{2}}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}}{4^{2}}
Billi \frac{-64\left(x+1\right)^{2}}{4^{2}} u \frac{\left(32x+32\right)\times 4^{2}}{4^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
24x+28-4x^{2}=\frac{-64x^{2}-128x-64+512x+512}{4^{2}}
Agħmel il-multiplikazzjonijiet fi -64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{4^{2}}
Ikkombina termini simili f'-64x^{2}-128x-64+512x+512.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{16}
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
24x+28-4x^{2}=-4x^{2}+24x+28
Iddividi kull terminu ta' -64x^{2}+384x+448 b'16 biex tikseb-4x^{2}+24x+28.
24x+28-4x^{2}+4x^{2}=24x+28
Żid 4x^{2} maż-żewġ naħat.
24x+28=24x+28
Ikkombina -4x^{2} u 4x^{2} biex tikseb 0.
24x+28-24x=28
Naqqas 24x miż-żewġ naħat.
28=28
Ikkombina 24x u -24x biex tikseb 0.
\text{true}
Qabbel 28 u 28.
x\in \mathrm{R}
Din hija vera għal kwalunkwe x.