Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika n b'\frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Billi \frac{n\left(n-m\right)}{n-m} u \frac{n^{2}}{n-m} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Agħmel il-multiplikazzjonijiet fi n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Ikkombina termini simili f'n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
Iffattura n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Billi \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} u \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Agħmel il-multiplikazzjonijiet fi m^{2}+\left(m+n\right)\left(-m+n\right).
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Ikkombina termini simili f'm^{2}-m^{2}+mn-nm+n^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Iddividi \frac{-nm}{n-m} b'\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} billi timmultiplika \frac{-nm}{n-m} bir-reċiproku ta' \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Annulla n\left(-m+n\right) fin-numeratur u d-denominatur.
\frac{-m^{2}-mn}{n}
Uża l-propjetà distributtiva biex timmultiplika -m b'm+n.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika n b'\frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Billi \frac{n\left(n-m\right)}{n-m} u \frac{n^{2}}{n-m} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Agħmel il-multiplikazzjonijiet fi n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Ikkombina termini simili f'n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
Iffattura n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Billi \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} u \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Agħmel il-multiplikazzjonijiet fi m^{2}+\left(m+n\right)\left(-m+n\right).
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Ikkombina termini simili f'm^{2}-m^{2}+mn-nm+n^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Iddividi \frac{-nm}{n-m} b'\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} billi timmultiplika \frac{-nm}{n-m} bir-reċiproku ta' \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Annulla n\left(-m+n\right) fin-numeratur u d-denominatur.
\frac{-m^{2}-mn}{n}
Uża l-propjetà distributtiva biex timmultiplika -m b'm+n.