Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Iffattura m^{2}+2m. Iffattura m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m\left(m+2\right) u \left(m+2\right)^{2} huwa m\left(m+2\right)^{2}. Immultiplika \frac{m-2}{m\left(m+2\right)} b'\frac{m+2}{m+2}. Immultiplika \frac{m-1}{\left(m+2\right)^{2}} b'\frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Billi \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} u \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Agħmel il-multiplikazzjonijiet fi \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Ikkombina termini simili f'm^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Espandi m\left(m+2\right)^{2}.
\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Iffattura m^{2}+2m. Iffattura m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m\left(m+2\right) u \left(m+2\right)^{2} huwa m\left(m+2\right)^{2}. Immultiplika \frac{m-2}{m\left(m+2\right)} b'\frac{m+2}{m+2}. Immultiplika \frac{m-1}{\left(m+2\right)^{2}} b'\frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Billi \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} u \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Agħmel il-multiplikazzjonijiet fi \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Ikkombina termini simili f'm^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Espandi m\left(m+2\right)^{2}.