Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Parti Reali
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
Irrazzjonalizza d-denominatur tal-\frac{i\sqrt{2}-5}{i+\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-i-\sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Ikkunsidra li \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
Ikkwadra i. Ikkwadra \sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
Naqqas 2 minn -1 biex tikseb -3.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' i\sqrt{2}-5 b'kull terminu ta' i-\sqrt{2}.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
Immultiplika -i u 2 biex tikseb -2i.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
Naqqas 5i minn -2i biex tikseb -7i.
\frac{4\sqrt{2}-7i}{-3}
Ikkombina -\sqrt{2} u 5\sqrt{2} biex tikseb 4\sqrt{2}.
\frac{-4\sqrt{2}+7i}{3}
Immultiplika kemm in-numeratur u kif ukoll id-denominatur b’-1.