Evalwa
-\frac{4\sqrt{2}}{3}+\frac{7}{3}i\approx -1.885618083+2.333333333i
Parti Reali
-\frac{4 \sqrt{2}}{3} = -1.885618083164127
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
Irrazzjonalizza d-denominatur tal-\frac{i\sqrt{2}-5}{i+\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-i-\sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Ikkunsidra li \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
Ikkwadra i. Ikkwadra \sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
Naqqas 2 minn -1 biex tikseb -3.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' i\sqrt{2}-5 b'kull terminu ta' i-\sqrt{2}.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
Immultiplika -i u 2 biex tikseb -2i.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
Naqqas 5i minn -2i biex tikseb -7i.
\frac{4\sqrt{2}-7i}{-3}
Ikkombina -\sqrt{2} u 5\sqrt{2} biex tikseb 4\sqrt{2}.
\frac{-4\sqrt{2}+7i}{3}
Immultiplika kemm in-numeratur u kif ukoll id-denominatur b’-1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}