Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a-1 u a+1 huwa \left(a-1\right)\left(a+1\right). Immultiplika \frac{a^{5}}{a-1} b'\frac{a+1}{a+1}. Immultiplika \frac{a^{2}}{a+1} b'\frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Billi \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} u \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Agħmel il-multiplikazzjonijiet fi a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(a-1\right)\left(a+1\right) u a-1 huwa \left(a-1\right)\left(a+1\right). Immultiplika \frac{1}{a-1} b'\frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Billi \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} u \frac{a+1}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Agħmel il-multiplikazzjonijiet fi a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Annulla a-1 fin-numeratur u d-denominatur.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Billi \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} u \frac{1}{a+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Ikkombina termini simili f'a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Annulla a+1 fin-numeratur u d-denominatur.
a^{4}+a^{3}+a^{2}+2
Espandi l-espressjoni.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a-1 u a+1 huwa \left(a-1\right)\left(a+1\right). Immultiplika \frac{a^{5}}{a-1} b'\frac{a+1}{a+1}. Immultiplika \frac{a^{2}}{a+1} b'\frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Billi \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} u \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Agħmel il-multiplikazzjonijiet fi a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(a-1\right)\left(a+1\right) u a-1 huwa \left(a-1\right)\left(a+1\right). Immultiplika \frac{1}{a-1} b'\frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Billi \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} u \frac{a+1}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Agħmel il-multiplikazzjonijiet fi a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Annulla a-1 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Billi \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} u \frac{1}{a+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Ikkombina termini simili f'a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Annulla a+1 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Espandi l-espressjoni.
4a^{4-1}+3a^{3-1}+2a^{2-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Naqqas 1 minn 4.
4a^{3}+3a^{2}+2a^{2-1}
Naqqas 1 minn 3.
4a^{3}+3a^{2}+2a^{1}
Naqqas 1 minn 2.
4a^{3}+3a^{2}+2a
Għal kwalunkwe terminu t, t^{1}=t.