Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Iffattura a^{2}-a. Iffattura a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a\left(a-1\right) u a\left(a+1\right) huwa a\left(a-1\right)\left(a+1\right). Immultiplika \frac{a+1}{a\left(a-1\right)} b'\frac{a+1}{a+1}. Immultiplika \frac{a-1}{a\left(a+1\right)} b'\frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Billi \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} u \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Agħmel il-multiplikazzjonijiet fi \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Ikkombina termini simili f'a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Annulla a fin-numeratur u d-denominatur.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Iffattura a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Billi \frac{4}{\left(a-1\right)\left(a+1\right)} u \frac{1}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom. Naqqas 1 minn 4 biex tikseb 3.
\frac{3}{a^{2}-1}
Espandi \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Iffattura a^{2}-a. Iffattura a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a\left(a-1\right) u a\left(a+1\right) huwa a\left(a-1\right)\left(a+1\right). Immultiplika \frac{a+1}{a\left(a-1\right)} b'\frac{a+1}{a+1}. Immultiplika \frac{a-1}{a\left(a+1\right)} b'\frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Billi \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} u \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Agħmel il-multiplikazzjonijiet fi \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Ikkombina termini simili f'a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Annulla a fin-numeratur u d-denominatur.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Iffattura a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Billi \frac{4}{\left(a-1\right)\left(a+1\right)} u \frac{1}{\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom. Naqqas 1 minn 4 biex tikseb 3.
\frac{3}{a^{2}-1}
Espandi \left(a-1\right)\left(a+1\right).