Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
Iffattura a^{2}-a. Iffattura a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a\left(a-1\right) u a\left(a+1\right) huwa a\left(a-1\right)\left(a+1\right). Immultiplika \frac{a+1}{a\left(a-1\right)} b'\frac{a+1}{a+1}. Immultiplika \frac{1-a}{a\left(a+1\right)} b'\frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
Billi \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} u \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
Agħmel il-multiplikazzjonijiet fi \left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right).
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
Ikkombina termini simili f'a^{2}+a+a+1-a+1+a^{2}-a.
\frac{2a^{2}+2}{a^{3}-a}
Espandi a\left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
Iffattura a^{2}-a. Iffattura a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a\left(a-1\right) u a\left(a+1\right) huwa a\left(a-1\right)\left(a+1\right). Immultiplika \frac{a+1}{a\left(a-1\right)} b'\frac{a+1}{a+1}. Immultiplika \frac{1-a}{a\left(a+1\right)} b'\frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
Billi \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} u \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
Agħmel il-multiplikazzjonijiet fi \left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right).
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
Ikkombina termini simili f'a^{2}+a+a+1-a+1+a^{2}-a.
\frac{2a^{2}+2}{a^{3}-a}
Espandi a\left(a-1\right)\left(a+1\right).