Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Sehem

\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Iddividi \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} b'\frac{6x+10y}{5x-25y} billi timmultiplika \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} bir-reċiproku ta' \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Annulla \left(3x-5y\right)\left(3x+5y\right) fin-numeratur u d-denominatur.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Immultiplika \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} b'\frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Annulla 9x^{2}+15xy+25y^{2} fin-numeratur u d-denominatur.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Uża l-propjetà distributtiva biex timmultiplika 5 b'x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Uża l-propjetà distributtiva biex timmultiplika 2 b'9x^{2}-18xy+5y^{2}.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Iddividi \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} b'\frac{6x+10y}{5x-25y} billi timmultiplika \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} bir-reċiproku ta' \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Annulla \left(3x-5y\right)\left(3x+5y\right) fin-numeratur u d-denominatur.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Immultiplika \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} b'\frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Annulla 9x^{2}+15xy+25y^{2} fin-numeratur u d-denominatur.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Uża l-propjetà distributtiva biex timmultiplika 5 b'x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Uża l-propjetà distributtiva biex timmultiplika 2 b'9x^{2}-18xy+5y^{2}.