Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x u x+1 huwa x\left(x+1\right). Immultiplika \frac{7}{x} b'\frac{x+1}{x+1}. Immultiplika \frac{6}{x+1} b'\frac{x}{x}.
\frac{7\left(x+1\right)-6x}{x\left(x+1\right)}
Billi \frac{7\left(x+1\right)}{x\left(x+1\right)} u \frac{6x}{x\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{7x+7-6x}{x\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 7\left(x+1\right)-6x.
\frac{x+7}{x\left(x+1\right)}
Ikkombina termini simili f'7x+7-6x.
\frac{x+7}{x^{2}+x}
Espandi x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x u x+1 huwa x\left(x+1\right). Immultiplika \frac{7}{x} b'\frac{x+1}{x+1}. Immultiplika \frac{6}{x+1} b'\frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)-6x}{x\left(x+1\right)})
Billi \frac{7\left(x+1\right)}{x\left(x+1\right)} u \frac{6x}{x\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+7-6x}{x\left(x+1\right)})
Agħmel il-multiplikazzjonijiet fi 7\left(x+1\right)-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x\left(x+1\right)})
Ikkombina termini simili f'7x+7-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x})
Uża l-propjetà distributtiva biex timmultiplika x b'x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Issimplifika.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Immultiplika x^{2}+x^{1} b'x^{0}.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Immultiplika x^{1}+7 b'2x^{1}+x^{0}.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}+14x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Issimplifika.
\frac{-x^{2}-14x^{1}-7x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Ikkombina termini simili.
\frac{-x^{2}-14x-7x^{0}}{\left(x^{2}+x\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-x^{2}-14x-7}{\left(x^{2}+x\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.