Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. m
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{6.626\times 10^{-26}Js\times 3ms^{-1}}{0.24\times 10^{-18}J}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid -34 u 8 biex tikseb -26.
\frac{6.626\times 10^{-26}J\times 3m}{0.24\times 10^{-18}J}
Immultiplika s u s^{-1} biex tikseb 1.
\frac{3\times 6.626\times 10^{-26}m}{0.24\times 10^{-18}}
Annulla J fin-numeratur u d-denominatur.
\frac{3\times 6.626m}{0.24\times 10^{8}}
Biex tiddividi l-qawwa tal-istess bażi, naqqas l-esponent tan-numeratur mill-esponent tad-denominatur.
\frac{19.878m}{0.24\times 10^{8}}
Immultiplika 3 u 6.626 biex tikseb 19.878.
\frac{19.878m}{0.24\times 100000000}
Ikkalkula 10 bil-power ta' 8 u tikseb 100000000.
\frac{19.878m}{24000000}
Immultiplika 0.24 u 100000000 biex tikseb 24000000.
0.00000082825m
Iddividi 19.878m b'24000000 biex tikseb0.00000082825m.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{6.626\times 10^{-26}Js\times 3ms^{-1}}{0.24\times 10^{-18}J})
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid -34 u 8 biex tikseb -26.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{6.626\times 10^{-26}J\times 3m}{0.24\times 10^{-18}J})
Immultiplika s u s^{-1} biex tikseb 1.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3\times 6.626\times 10^{-26}m}{0.24\times 10^{-18}})
Annulla J fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3\times 6.626m}{0.24\times 10^{8}})
Biex tiddividi l-qawwa tal-istess bażi, naqqas l-esponent tan-numeratur mill-esponent tad-denominatur.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{0.24\times 10^{8}})
Immultiplika 3 u 6.626 biex tikseb 19.878.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{0.24\times 100000000})
Ikkalkula 10 bil-power ta' 8 u tikseb 100000000.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{19.878m}{24000000})
Immultiplika 0.24 u 100000000 biex tikseb 24000000.
\frac{\mathrm{d}}{\mathrm{d}m}(0.00000082825m)
Iddividi 19.878m b'24000000 biex tikseb0.00000082825m.
0.00000082825m^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
0.00000082825m^{0}
Naqqas 1 minn 1.
0.00000082825\times 1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
0.00000082825
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.