Solvi għal x (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
Solvi għal x
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -6,0 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{6} b'x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{6}x+1 b'12+x u kkombina termini simili.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 3x+\frac{1}{6}x^{2}+12 b'\frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Esprimi 3\times \frac{6x-36}{x^{2}-36} bħala frazzjoni waħda.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Immultiplika \frac{1}{6} b'\frac{6x-36}{x^{2}-36} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi 12\times \frac{6x-36}{x^{2}-36} bħala frazzjoni waħda.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 3 b'6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi \frac{18x-108}{x^{2}-36}x bħala frazzjoni waħda.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Annulla 6 fin-numeratur u d-denominatur.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} bħala frazzjoni waħda.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 12 b'6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Iffattura x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Billi \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} u \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Agħmel il-multiplikazzjonijiet fi \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Ikkombina termini simili f'18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Iffattura x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Billi \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} u \frac{72x-432}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Ikkombina termini simili f'12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Ikkunsidra li \left(x-6\right)\left(x+6\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Naqqas x miż-żewġ naħat.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Iffattura x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x b'\frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Billi \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} u \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Agħmel il-multiplikazzjonijiet fi 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Ikkombina termini simili f'12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Naqqas 12 miż-żewġ naħat.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 12 b'\frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Billi \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} u \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Agħmel il-multiplikazzjonijiet fi 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Ikkombina termini simili f'12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -6,6 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-6\right)\left(x+6\right).
x\in \mathrm{C}
Din hija vera għal kwalunkwe x.
x\in \mathrm{C}\setminus -6,0,6
Il-varjabbli x ma tistax tkun ugwali għal kwalunkwe mill-valuri -6,6,0.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -6,0 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{6} b'x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{6}x+1 b'12+x u kkombina termini simili.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 3x+\frac{1}{6}x^{2}+12 b'\frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Esprimi 3\times \frac{6x-36}{x^{2}-36} bħala frazzjoni waħda.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Immultiplika \frac{1}{6} b'\frac{6x-36}{x^{2}-36} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi 12\times \frac{6x-36}{x^{2}-36} bħala frazzjoni waħda.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 3 b'6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi \frac{18x-108}{x^{2}-36}x bħala frazzjoni waħda.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Annulla 6 fin-numeratur u d-denominatur.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Esprimi \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} bħala frazzjoni waħda.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Uża l-propjetà distributtiva biex timmultiplika 12 b'6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Iffattura x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Billi \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} u \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Agħmel il-multiplikazzjonijiet fi \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Ikkombina termini simili f'18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Iffattura x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Billi \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} u \frac{72x-432}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Ikkombina termini simili f'12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Ikkunsidra li \left(x-6\right)\left(x+6\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Naqqas x miż-żewġ naħat.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Iffattura x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x b'\frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Billi \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} u \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Agħmel il-multiplikazzjonijiet fi 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Ikkombina termini simili f'12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Naqqas 12 miż-żewġ naħat.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 12 b'\frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Billi \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} u \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Agħmel il-multiplikazzjonijiet fi 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Ikkombina termini simili f'12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -6,6 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-6\right)\left(x+6\right).
x\in \mathrm{R}
Din hija vera għal kwalunkwe x.
x\in \mathrm{R}\setminus -6,0,6
Il-varjabbli x ma tistax tkun ugwali għal kwalunkwe mill-valuri -6,6,0.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}