Evalwa
\frac{x\left(x-2\right)}{2\left(x-3\right)}
Iddifferenzja w.r.t. x
\frac{x^{2}-6x+6}{2\left(x-3\right)^{2}}
Sehem
Ikkupjat fuq il-klibbord
\frac{6x^{2}y\left(5x-10\right)}{\left(2x-6\right)\times 30xy}
Iddividi \frac{6x^{2}y}{2x-6} b'\frac{30xy}{5x-10} billi timmultiplika \frac{6x^{2}y}{2x-6} bir-reċiproku ta' \frac{30xy}{5x-10}.
\frac{x\left(5x-10\right)}{5\left(2x-6\right)}
Annulla 6xy fin-numeratur u d-denominatur.
\frac{5x\left(x-2\right)}{2\times 5\left(x-3\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{x\left(x-2\right)}{2\left(x-3\right)}
Annulla 5 fin-numeratur u d-denominatur.
\frac{x^{2}-2x}{2x-6}
Espandi l-espressjoni.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{2}y\left(5x-10\right)}{\left(2x-6\right)\times 30xy})
Iddividi \frac{6x^{2}y}{2x-6} b'\frac{30xy}{5x-10} billi timmultiplika \frac{6x^{2}y}{2x-6} bir-reċiproku ta' \frac{30xy}{5x-10}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(5x-10\right)}{5\left(2x-6\right)})
Annulla 6xy fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x\left(x-2\right)}{2\times 5\left(x-3\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{x\left(5x-10\right)}{5\left(2x-6\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-2\right)}{2\left(x-3\right)})
Annulla 5 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x}{2\left(x-3\right)})
Uża l-propjetà distributtiva biex timmultiplika x b'x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x}{2x-6})
Uża l-propjetà distributtiva biex timmultiplika 2 b'x-3.
\frac{\left(2x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1})-\left(x^{2}-2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-6)}{\left(2x^{1}-6\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(2x^{1}-6\right)\left(2x^{2-1}-2x^{1-1}\right)-\left(x^{2}-2x^{1}\right)\times 2x^{1-1}}{\left(2x^{1}-6\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(2x^{1}-6\right)\left(2x^{1}-2x^{0}\right)-\left(x^{2}-2x^{1}\right)\times 2x^{0}}{\left(2x^{1}-6\right)^{2}}
Issimplifika.
\frac{2x^{1}\times 2x^{1}+2x^{1}\left(-2\right)x^{0}-6\times 2x^{1}-6\left(-2\right)x^{0}-\left(x^{2}-2x^{1}\right)\times 2x^{0}}{\left(2x^{1}-6\right)^{2}}
Immultiplika 2x^{1}-6 b'2x^{1}-2x^{0}.
\frac{2x^{1}\times 2x^{1}+2x^{1}\left(-2\right)x^{0}-6\times 2x^{1}-6\left(-2\right)x^{0}-\left(x^{2}\times 2x^{0}-2x^{1}\times 2x^{0}\right)}{\left(2x^{1}-6\right)^{2}}
Immultiplika x^{2}-2x^{1} b'2x^{0}.
\frac{2\times 2x^{1+1}+2\left(-2\right)x^{1}-6\times 2x^{1}-6\left(-2\right)x^{0}-\left(2x^{2}-2\times 2x^{1}\right)}{\left(2x^{1}-6\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{4x^{2}-4x^{1}-12x^{1}+12x^{0}-\left(2x^{2}-4x^{1}\right)}{\left(2x^{1}-6\right)^{2}}
Issimplifika.
\frac{2x^{2}-12x^{1}+12x^{0}}{\left(2x^{1}-6\right)^{2}}
Ikkombina termini simili.
\frac{2x^{2}-12x+12x^{0}}{\left(2x-6\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{2x^{2}-12x+12\times 1}{\left(2x-6\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{2x^{2}-12x+12}{\left(2x-6\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}