Evalwa
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Espandi
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Sehem
Ikkupjat fuq il-klibbord
\frac{6m+mn}{4mn^{2}}-36
Esprimi \frac{\frac{6m+mn}{4m}}{n^{2}} bħala frazzjoni waħda.
\frac{m\left(n+6\right)}{4mn^{2}}-36
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6m+mn}{4mn^{2}}.
\frac{n+6}{4n^{2}}-36
Annulla m fin-numeratur u d-denominatur.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 36 b'\frac{4n^{2}}{4n^{2}}.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
Billi \frac{n+6}{4n^{2}} u \frac{36\times 4n^{2}}{4n^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{n+6-144n^{2}}{4n^{2}}
Agħmel il-multiplikazzjonijiet fi n+6-36\times 4n^{2}.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{n+6-144n^{2}}{4n^{2}}.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Annulla 4 fin-numeratur u d-denominatur.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Biex issib l-oppost ta' -\frac{1}{288}\sqrt{3457}+\frac{1}{288}, sib l-oppost ta' kull terminu.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Biex issib l-oppost ta' \frac{1}{288}\sqrt{3457}+\frac{1}{288}, sib l-oppost ta' kull terminu.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Uża l-propjetà distributtiva biex timmultiplika -36 b'n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
Uża l-propjetà distributtiva biex timmultiplika -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} b'n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} u kkombina termini simili.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
Il-kwadrat ta' \sqrt{3457} huwa 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
Immultiplika \frac{1}{2304} u 3457 biex tikseb \frac{3457}{2304}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
Naqqas \frac{1}{2304} minn \frac{3457}{2304} biex tikseb \frac{3}{2}.
\frac{6m+mn}{4mn^{2}}-36
Esprimi \frac{\frac{6m+mn}{4m}}{n^{2}} bħala frazzjoni waħda.
\frac{m\left(n+6\right)}{4mn^{2}}-36
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{6m+mn}{4mn^{2}}.
\frac{n+6}{4n^{2}}-36
Annulla m fin-numeratur u d-denominatur.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 36 b'\frac{4n^{2}}{4n^{2}}.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
Billi \frac{n+6}{4n^{2}} u \frac{36\times 4n^{2}}{4n^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{n+6-144n^{2}}{4n^{2}}
Agħmel il-multiplikazzjonijiet fi n+6-36\times 4n^{2}.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{n+6-144n^{2}}{4n^{2}}.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Annulla 4 fin-numeratur u d-denominatur.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Biex issib l-oppost ta' -\frac{1}{288}\sqrt{3457}+\frac{1}{288}, sib l-oppost ta' kull terminu.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Biex issib l-oppost ta' \frac{1}{288}\sqrt{3457}+\frac{1}{288}, sib l-oppost ta' kull terminu.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Uża l-propjetà distributtiva biex timmultiplika -36 b'n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
Uża l-propjetà distributtiva biex timmultiplika -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} b'n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} u kkombina termini simili.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
Il-kwadrat ta' \sqrt{3457} huwa 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
Immultiplika \frac{1}{2304} u 3457 biex tikseb \frac{3457}{2304}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
Naqqas \frac{1}{2304} minn \frac{3457}{2304} biex tikseb \frac{3}{2}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}