Aqbeż għall-kontenut ewlieni
Solvi għal h
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8875^{2}\right)
Immultiplika \frac{50}{17} u 9800 biex tikseb \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8875^{2}\right)
Immultiplika 34 u 9800 biex tikseb 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78765625\right)
Ikkalkula 8875 bil-power ta' 2 u tikseb 78765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289062500
Uża l-propjetà distributtiva biex timmultiplika 26500 b'h^{2}-78765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289062500
Naqqas 26500h^{2} miż-żewġ naħat.
\frac{490000}{17}+333200h-26500h^{2}+2087289062500=0
Żid 2087289062500 maż-żewġ naħat.
\frac{35483914552500}{17}+333200h-26500h^{2}=0
Żid \frac{490000}{17} u 2087289062500 biex tikseb \frac{35483914552500}{17}.
-26500h^{2}+333200h+\frac{35483914552500}{17}=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
h=\frac{-333200±\sqrt{333200^{2}-4\left(-26500\right)\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -26500 għal a, 333200 għal b, u \frac{35483914552500}{17} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-333200±\sqrt{111022240000-4\left(-26500\right)\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Ikkwadra 333200.
h=\frac{-333200±\sqrt{111022240000+106000\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Immultiplika -4 b'-26500.
h=\frac{-333200±\sqrt{111022240000+\frac{3761294942565000000}{17}}}{2\left(-26500\right)}
Immultiplika 106000 b'\frac{35483914552500}{17}.
h=\frac{-333200±\sqrt{\frac{3761296829943080000}{17}}}{2\left(-26500\right)}
Żid 111022240000 ma' \frac{3761294942565000000}{17}.
h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{2\left(-26500\right)}
Ħu l-għerq kwadrat ta' \frac{3761296829943080000}{17}.
h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000}
Immultiplika 2 b'-26500.
h=\frac{\frac{200\sqrt{1598551152725809}}{17}-333200}{-53000}
Issa solvi l-ekwazzjoni h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000} fejn ± hija plus. Żid -333200 ma' \frac{200\sqrt{1598551152725809}}{17}.
h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Iddividi -333200+\frac{200\sqrt{1598551152725809}}{17} b'-53000.
h=\frac{-\frac{200\sqrt{1598551152725809}}{17}-333200}{-53000}
Issa solvi l-ekwazzjoni h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000} fejn ± hija minus. Naqqas \frac{200\sqrt{1598551152725809}}{17} minn -333200.
h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Iddividi -333200-\frac{200\sqrt{1598551152725809}}{17} b'-53000.
h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265} h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
L-ekwazzjoni issa solvuta.
\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8875^{2}\right)
Immultiplika \frac{50}{17} u 9800 biex tikseb \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8875^{2}\right)
Immultiplika 34 u 9800 biex tikseb 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78765625\right)
Ikkalkula 8875 bil-power ta' 2 u tikseb 78765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289062500
Uża l-propjetà distributtiva biex timmultiplika 26500 b'h^{2}-78765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289062500
Naqqas 26500h^{2} miż-żewġ naħat.
333200h-26500h^{2}=-2087289062500-\frac{490000}{17}
Naqqas \frac{490000}{17} miż-żewġ naħat.
333200h-26500h^{2}=-\frac{35483914552500}{17}
Naqqas \frac{490000}{17} minn -2087289062500 biex tikseb -\frac{35483914552500}{17}.
-26500h^{2}+333200h=-\frac{35483914552500}{17}
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
\frac{-26500h^{2}+333200h}{-26500}=-\frac{\frac{35483914552500}{17}}{-26500}
Iddividi ż-żewġ naħat b'-26500.
h^{2}+\frac{333200}{-26500}h=-\frac{\frac{35483914552500}{17}}{-26500}
Meta tiddividi b'-26500 titneħħa l-multiplikazzjoni b'-26500.
h^{2}-\frac{3332}{265}h=-\frac{\frac{35483914552500}{17}}{-26500}
Naqqas il-frazzjoni \frac{333200}{-26500} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 100.
h^{2}-\frac{3332}{265}h=\frac{70967829105}{901}
Iddividi -\frac{35483914552500}{17} b'-26500.
h^{2}-\frac{3332}{265}h+\left(-\frac{1666}{265}\right)^{2}=\frac{70967829105}{901}+\left(-\frac{1666}{265}\right)^{2}
Iddividi -\frac{3332}{265}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{1666}{265}. Imbagħad żid il-kwadru ta' -\frac{1666}{265} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{70967829105}{901}+\frac{2775556}{70225}
Ikkwadra -\frac{1666}{265} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{94032420748577}{1193825}
Żid \frac{70967829105}{901} ma' \frac{2775556}{70225} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(h-\frac{1666}{265}\right)^{2}=\frac{94032420748577}{1193825}
Fattur h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{1666}{265}\right)^{2}}=\sqrt{\frac{94032420748577}{1193825}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
h-\frac{1666}{265}=\frac{\sqrt{1598551152725809}}{4505} h-\frac{1666}{265}=-\frac{\sqrt{1598551152725809}}{4505}
Issimplifika.
h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265} h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Żid \frac{1666}{265} maż-żewġ naħat tal-ekwazzjoni.