Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
Iffattura x^{2}-4x-21.
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-7\right)\left(x+3\right) u x-7 huwa \left(x-7\right)\left(x+3\right). Immultiplika \frac{3}{x-7} b'\frac{x+3}{x+3}.
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Billi \frac{5x}{\left(x-7\right)\left(x+3\right)} u \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Agħmel il-multiplikazzjonijiet fi 5x-3\left(x+3\right).
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Ikkombina termini simili f'5x-3x-9.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-7\right)\left(x+3\right) u x+3 huwa \left(x-7\right)\left(x+3\right). Immultiplika \frac{4}{x+3} b'\frac{x-7}{x-7}.
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Billi \frac{2x-9}{\left(x-7\right)\left(x+3\right)} u \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
Agħmel il-multiplikazzjonijiet fi 2x-9+4\left(x-7\right).
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
Ikkombina termini simili f'2x-9+4x-28.
\frac{6x-37}{x^{2}-4x-21}
Espandi \left(x-7\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
Iffattura x^{2}-4x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-7\right)\left(x+3\right) u x-7 huwa \left(x-7\right)\left(x+3\right). Immultiplika \frac{3}{x-7} b'\frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Billi \frac{5x}{\left(x-7\right)\left(x+3\right)} u \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Agħmel il-multiplikazzjonijiet fi 5x-3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Ikkombina termini simili f'5x-3x-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-7\right)\left(x+3\right) u x+3 huwa \left(x-7\right)\left(x+3\right). Immultiplika \frac{4}{x+3} b'\frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Billi \frac{2x-9}{\left(x-7\right)\left(x+3\right)} u \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
Agħmel il-multiplikazzjonijiet fi 2x-9+4\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
Ikkombina termini simili f'2x-9+4x-28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
Uża l-propjetà distributtiva biex timmultiplika x-7 b'x+3 u kkombina termini simili.
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Issimplifika.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Immultiplika x^{2}-4x^{1}-21 b'6x^{0}.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Immultiplika 6x^{1}-37 b'2x^{1}-4x^{0}.
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Issimplifika.
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
Ikkombina termini simili.
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.