Solvi għal x
x = \frac{\sqrt{1474559996800001} + 38400001}{8000000} \approx 9.60000012
x=\frac{38400001-\sqrt{1474559996800001}}{8000000}\approx 0.00000013
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{5-x}{4\times 1000000}=9.6x-x^{2}
Ikkalkula 10 bil-power ta' 6 u tikseb 1000000.
\frac{5-x}{4000000}=9.6x-x^{2}
Immultiplika 4 u 1000000 biex tikseb 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=9.6x-x^{2}
Iddividi kull terminu ta' 5-x b'4000000 biex tikseb\frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-9.6x=-x^{2}
Naqqas 9.6x miż-żewġ naħat.
\frac{1}{800000}-\frac{38400001}{4000000}x=-x^{2}
Ikkombina -\frac{1}{4000000}x u -9.6x biex tikseb -\frac{38400001}{4000000}x.
\frac{1}{800000}-\frac{38400001}{4000000}x+x^{2}=0
Żid x^{2} maż-żewġ naħat.
x^{2}-\frac{38400001}{4000000}x+\frac{1}{800000}=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-\frac{38400001}{4000000}\right)±\sqrt{\left(-\frac{38400001}{4000000}\right)^{2}-4\times \frac{1}{800000}}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, -\frac{38400001}{4000000} għal b, u \frac{1}{800000} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{38400001}{4000000}\right)±\sqrt{\frac{1474560076800001}{16000000000000}-4\times \frac{1}{800000}}}{2}
Ikkwadra -\frac{38400001}{4000000} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\left(-\frac{38400001}{4000000}\right)±\sqrt{\frac{1474560076800001}{16000000000000}-\frac{1}{200000}}}{2}
Immultiplika -4 b'\frac{1}{800000}.
x=\frac{-\left(-\frac{38400001}{4000000}\right)±\sqrt{\frac{1474559996800001}{16000000000000}}}{2}
Żid \frac{1474560076800001}{16000000000000} ma' -\frac{1}{200000} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{-\left(-\frac{38400001}{4000000}\right)±\frac{\sqrt{1474559996800001}}{4000000}}{2}
Ħu l-għerq kwadrat ta' \frac{1474559996800001}{16000000000000}.
x=\frac{\frac{38400001}{4000000}±\frac{\sqrt{1474559996800001}}{4000000}}{2}
L-oppost ta' -\frac{38400001}{4000000} huwa \frac{38400001}{4000000}.
x=\frac{\sqrt{1474559996800001}+38400001}{2\times 4000000}
Issa solvi l-ekwazzjoni x=\frac{\frac{38400001}{4000000}±\frac{\sqrt{1474559996800001}}{4000000}}{2} fejn ± hija plus. Żid \frac{38400001}{4000000} ma' \frac{\sqrt{1474559996800001}}{4000000}.
x=\frac{\sqrt{1474559996800001}+38400001}{8000000}
Iddividi \frac{38400001+\sqrt{1474559996800001}}{4000000} b'2.
x=\frac{38400001-\sqrt{1474559996800001}}{2\times 4000000}
Issa solvi l-ekwazzjoni x=\frac{\frac{38400001}{4000000}±\frac{\sqrt{1474559996800001}}{4000000}}{2} fejn ± hija minus. Naqqas \frac{\sqrt{1474559996800001}}{4000000} minn \frac{38400001}{4000000}.
x=\frac{38400001-\sqrt{1474559996800001}}{8000000}
Iddividi \frac{38400001-\sqrt{1474559996800001}}{4000000} b'2.
x=\frac{\sqrt{1474559996800001}+38400001}{8000000} x=\frac{38400001-\sqrt{1474559996800001}}{8000000}
L-ekwazzjoni issa solvuta.
\frac{5-x}{4\times 1000000}=9.6x-x^{2}
Ikkalkula 10 bil-power ta' 6 u tikseb 1000000.
\frac{5-x}{4000000}=9.6x-x^{2}
Immultiplika 4 u 1000000 biex tikseb 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=9.6x-x^{2}
Iddividi kull terminu ta' 5-x b'4000000 biex tikseb\frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-9.6x=-x^{2}
Naqqas 9.6x miż-żewġ naħat.
\frac{1}{800000}-\frac{38400001}{4000000}x=-x^{2}
Ikkombina -\frac{1}{4000000}x u -9.6x biex tikseb -\frac{38400001}{4000000}x.
\frac{1}{800000}-\frac{38400001}{4000000}x+x^{2}=0
Żid x^{2} maż-żewġ naħat.
-\frac{38400001}{4000000}x+x^{2}=-\frac{1}{800000}
Naqqas \frac{1}{800000} miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
x^{2}-\frac{38400001}{4000000}x=-\frac{1}{800000}
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
x^{2}-\frac{38400001}{4000000}x+\left(-\frac{38400001}{8000000}\right)^{2}=-\frac{1}{800000}+\left(-\frac{38400001}{8000000}\right)^{2}
Iddividi -\frac{38400001}{4000000}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{38400001}{8000000}. Imbagħad żid il-kwadru ta' -\frac{38400001}{8000000} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{38400001}{4000000}x+\frac{1474560076800001}{64000000000000}=-\frac{1}{800000}+\frac{1474560076800001}{64000000000000}
Ikkwadra -\frac{38400001}{8000000} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{38400001}{4000000}x+\frac{1474560076800001}{64000000000000}=\frac{1474559996800001}{64000000000000}
Żid -\frac{1}{800000} ma' \frac{1474560076800001}{64000000000000} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{38400001}{8000000}\right)^{2}=\frac{1474559996800001}{64000000000000}
Fattur x^{2}-\frac{38400001}{4000000}x+\frac{1474560076800001}{64000000000000}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{38400001}{8000000}\right)^{2}}=\sqrt{\frac{1474559996800001}{64000000000000}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{38400001}{8000000}=\frac{\sqrt{1474559996800001}}{8000000} x-\frac{38400001}{8000000}=-\frac{\sqrt{1474559996800001}}{8000000}
Issimplifika.
x=\frac{\sqrt{1474559996800001}+38400001}{8000000} x=\frac{38400001-\sqrt{1474559996800001}}{8000000}
Żid \frac{38400001}{8000000} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}