Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{5\times 4x}{4x\left(x-1\right)}-\frac{4\left(x-1\right)}{4x\left(x-1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x-1 u 4x huwa 4x\left(x-1\right). Immultiplika \frac{5}{x-1} b'\frac{4x}{4x}. Immultiplika \frac{4}{4x} b'\frac{x-1}{x-1}.
\frac{5\times 4x-4\left(x-1\right)}{4x\left(x-1\right)}
Billi \frac{5\times 4x}{4x\left(x-1\right)} u \frac{4\left(x-1\right)}{4x\left(x-1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{20x-4x+4}{4x\left(x-1\right)}
Agħmel il-multiplikazzjonijiet fi 5\times 4x-4\left(x-1\right).
\frac{16x+4}{4x\left(x-1\right)}
Ikkombina termini simili f'20x-4x+4.
\frac{4\left(4x+1\right)}{4x\left(x-1\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{16x+4}{4x\left(x-1\right)}.
\frac{4x+1}{x\left(x-1\right)}
Annulla 4 fin-numeratur u d-denominatur.
\frac{4x+1}{x^{2}-x}
Espandi x\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 4x}{4x\left(x-1\right)}-\frac{4\left(x-1\right)}{4x\left(x-1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x-1 u 4x huwa 4x\left(x-1\right). Immultiplika \frac{5}{x-1} b'\frac{4x}{4x}. Immultiplika \frac{4}{4x} b'\frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 4x-4\left(x-1\right)}{4x\left(x-1\right)})
Billi \frac{5\times 4x}{4x\left(x-1\right)} u \frac{4\left(x-1\right)}{4x\left(x-1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{20x-4x+4}{4x\left(x-1\right)})
Agħmel il-multiplikazzjonijiet fi 5\times 4x-4\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16x+4}{4x\left(x-1\right)})
Ikkombina termini simili f'20x-4x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(4x+1\right)}{4x\left(x-1\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{16x+4}{4x\left(x-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+1}{x\left(x-1\right)})
Annulla 4 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+1}{x^{2}-x})
Uża l-propjetà distributtiva biex timmultiplika x b'x-1.
\frac{\left(x^{2}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{1}+1)-\left(4x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1})}{\left(x^{2}-x^{1}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-x^{1}\right)\times 4x^{1-1}-\left(4x^{1}+1\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-x^{1}\right)\times 4x^{0}-\left(4x^{1}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Issimplifika.
\frac{x^{2}\times 4x^{0}-x^{1}\times 4x^{0}-\left(4x^{1}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Immultiplika x^{2}-x^{1} b'4x^{0}.
\frac{x^{2}\times 4x^{0}-x^{1}\times 4x^{0}-\left(4x^{1}\times 2x^{1}+4x^{1}\left(-1\right)x^{0}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Immultiplika 4x^{1}+1 b'2x^{1}-x^{0}.
\frac{4x^{2}-4x^{1}-\left(4\times 2x^{1+1}+4\left(-1\right)x^{1}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{4x^{2}-4x^{1}-\left(8x^{2}-4x^{1}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}\right)^{2}}
Issimplifika.
\frac{-4x^{2}-2x^{1}+x^{0}}{\left(x^{2}-x^{1}\right)^{2}}
Ikkombina termini simili.
\frac{-4x^{2}-2x+x^{0}}{\left(x^{2}-x\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-4x^{2}-2x+1}{\left(x^{2}-x\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.