Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{5}{x+1}-\frac{2}{14}
Naqqas 3 minn 17 biex tikseb 14.
\frac{5}{x+1}-\frac{1}{7}
Naqqas il-frazzjoni \frac{2}{14} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+1 u 7 huwa 7\left(x+1\right). Immultiplika \frac{5}{x+1} b'\frac{7}{7}. Immultiplika \frac{1}{7} b'\frac{x+1}{x+1}.
\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)}
Billi \frac{5\times 7}{7\left(x+1\right)} u \frac{x+1}{7\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{35-x-1}{7\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 5\times 7-\left(x+1\right).
\frac{34-x}{7\left(x+1\right)}
Ikkombina termini simili f'35-x-1.
\frac{34-x}{7x+7}
Espandi 7\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{2}{14})
Naqqas 3 minn 17 biex tikseb 14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{1}{7})
Naqqas il-frazzjoni \frac{2}{14} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+1 u 7 huwa 7\left(x+1\right). Immultiplika \frac{5}{x+1} b'\frac{7}{7}. Immultiplika \frac{1}{7} b'\frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)})
Billi \frac{5\times 7}{7\left(x+1\right)} u \frac{x+1}{7\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{35-x-1}{7\left(x+1\right)})
Agħmel il-multiplikazzjonijiet fi 5\times 7-\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7\left(x+1\right)})
Ikkombina termini simili f'35-x-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7x+7})
Uża l-propjetà distributtiva biex timmultiplika 7 b'x+1.
\frac{\left(7x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+34)-\left(-x^{1}+34\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}+7)}{\left(7x^{1}+7\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{1-1}-\left(-x^{1}+34\right)\times 7x^{1-1}}{\left(7x^{1}+7\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{0}-\left(-x^{1}+34\right)\times 7x^{0}}{\left(7x^{1}+7\right)^{2}}
Agħmel l-aritmetika.
\frac{7x^{1}\left(-1\right)x^{0}+7\left(-1\right)x^{0}-\left(-x^{1}\times 7x^{0}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{7\left(-1\right)x^{1}+7\left(-1\right)x^{0}-\left(-7x^{1}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}+238x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
Agħmel l-aritmetika.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}\right)-238x^{0}}{\left(7x^{1}+7\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(-7-\left(-7\right)\right)x^{1}+\left(-7-238\right)x^{0}}{\left(7x^{1}+7\right)^{2}}
Ikkombina termini simili.
\frac{-245x^{0}}{\left(7x^{1}+7\right)^{2}}
Naqqas -7 minn -7 u 238 minn -7.
\frac{-245x^{0}}{\left(7x+7\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-245}{\left(7x+7\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.