Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Naqqas 5 minn 4 biex tikseb -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Iffattura x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+4\right) u x+1 huwa \left(x+1\right)\left(x+4\right). Immultiplika \frac{2x}{x+1} b'\frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Billi \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} u \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Agħmel il-multiplikazzjonijiet fi 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Ikkombina termini simili f'3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+4\right) u x+4 huwa \left(x+1\right)\left(x+4\right). Immultiplika \frac{4}{x+4} b'\frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Billi \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} u \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Agħmel il-multiplikazzjonijiet fi x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Ikkombina termini simili f'x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Espandi \left(x+1\right)\left(x+4\right).
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Naqqas 5 minn 4 biex tikseb -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Iffattura x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+4\right) u x+1 huwa \left(x+1\right)\left(x+4\right). Immultiplika \frac{2x}{x+1} b'\frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Billi \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} u \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Agħmel il-multiplikazzjonijiet fi 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Ikkombina termini simili f'3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(x+4\right) u x+4 huwa \left(x+1\right)\left(x+4\right). Immultiplika \frac{4}{x+4} b'\frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Billi \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} u \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Agħmel il-multiplikazzjonijiet fi x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Ikkombina termini simili f'x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Espandi \left(x+1\right)\left(x+4\right).