Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. m
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3m\left(m+4\right)}{m^{2}+11m+28}
Iddividi \frac{3m}{m^{2}+11m+28} b'\frac{1}{m+4} billi timmultiplika \frac{3m}{m^{2}+11m+28} bir-reċiproku ta' \frac{1}{m+4}.
\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{3m}{m+7}
Annulla m+4 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{m^{2}+11m+28})
Iddividi \frac{3m}{m^{2}+11m+28} b'\frac{1}{m+4} billi timmultiplika \frac{3m}{m^{2}+11m+28} bir-reċiproku ta' \frac{1}{m+4}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{3m\left(m+4\right)}{m^{2}+11m+28}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m}{m+7})
Annulla m+4 fin-numeratur u d-denominatur.
\frac{\left(m^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}m}(3m^{1})-3m^{1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)}{\left(m^{1}+7\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(m^{1}+7\right)\times 3m^{1-1}-3m^{1}m^{1-1}}{\left(m^{1}+7\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(m^{1}+7\right)\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Agħmel l-aritmetika.
\frac{m^{1}\times 3m^{0}+7\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{3m^{1}+7\times 3m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{3m^{1}+21m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Agħmel l-aritmetika.
\frac{\left(3-3\right)m^{1}+21m^{0}}{\left(m^{1}+7\right)^{2}}
Ikkombina termini simili.
\frac{21m^{0}}{\left(m^{1}+7\right)^{2}}
Naqqas 3 minn 3.
\frac{21m^{0}}{\left(m+7\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{21\times 1}{\left(m+7\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{21}{\left(m+7\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.