Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2}{x-5}
Iffattura x^{2}-4x-5.
\frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-5\right)\left(x+1\right) u x-5 huwa \left(x-5\right)\left(x+1\right). Immultiplika \frac{2}{x-5} b'\frac{x+1}{x+1}.
\frac{3\left(x-1\right)-2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}
Billi \frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)} u \frac{2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3x-3-2x-2}{\left(x-5\right)\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 3\left(x-1\right)-2\left(x+1\right).
\frac{x-5}{\left(x-5\right)\left(x+1\right)}
Ikkombina termini simili f'3x-3-2x-2.
\frac{1}{x+1}
Annulla x-5 fin-numeratur u d-denominatur.
\frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2}{x-5}
Iffattura x^{2}-4x-5.
\frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x-5\right)\left(x+1\right) u x-5 huwa \left(x-5\right)\left(x+1\right). Immultiplika \frac{2}{x-5} b'\frac{x+1}{x+1}.
\frac{3\left(x-1\right)-2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}
Billi \frac{3\left(x-1\right)}{\left(x-5\right)\left(x+1\right)} u \frac{2\left(x+1\right)}{\left(x-5\right)\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3x-3-2x-2}{\left(x-5\right)\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 3\left(x-1\right)-2\left(x+1\right).
\frac{x-5}{\left(x-5\right)\left(x+1\right)}
Ikkombina termini simili f'3x-3-2x-2.
\frac{1}{x+1}
Annulla x-5 fin-numeratur u d-denominatur.