Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x-6 u x+2 huwa \left(x-6\right)\left(x+2\right). Immultiplika \frac{3}{x-6} b'\frac{x+2}{x+2}. Immultiplika \frac{2}{x+2} b'\frac{x-6}{x-6}.
\frac{3\left(x+2\right)-2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)}
Billi \frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)} u \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{3x+6-2x+12}{\left(x-6\right)\left(x+2\right)}
Agħmel il-multiplikazzjonijiet fi 3\left(x+2\right)-2\left(x-6\right).
\frac{x+18}{\left(x-6\right)\left(x+2\right)}
Ikkombina termini simili f'3x+6-2x+12.
\frac{x+18}{x^{2}-4x-12}
Espandi \left(x-6\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x-6 u x+2 huwa \left(x-6\right)\left(x+2\right). Immultiplika \frac{3}{x-6} b'\frac{x+2}{x+2}. Immultiplika \frac{2}{x+2} b'\frac{x-6}{x-6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)})
Billi \frac{3\left(x+2\right)}{\left(x-6\right)\left(x+2\right)} u \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+2\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+12}{\left(x-6\right)\left(x+2\right)})
Agħmel il-multiplikazzjonijiet fi 3\left(x+2\right)-2\left(x-6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{\left(x-6\right)\left(x+2\right)})
Ikkombina termini simili f'3x+6-2x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{x^{2}+2x-6x-12})
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-6 b'kull terminu ta' x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+18}{x^{2}-4x-12})
Ikkombina 2x u -6x biex tikseb -4x.
\frac{\left(x^{2}-4x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+18)-\left(x^{1}+18\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-12)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-4x^{1}-12\right)x^{1-1}-\left(x^{1}+18\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-4x^{1}-12\right)x^{0}-\left(x^{1}+18\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Issimplifika.
\frac{x^{2}x^{0}-4x^{1}x^{0}-12x^{0}-\left(x^{1}+18\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Immultiplika x^{2}-4x^{1}-12 b'x^{0}.
\frac{x^{2}x^{0}-4x^{1}x^{0}-12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\left(-4\right)x^{0}+18\times 2x^{1}+18\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Immultiplika x^{1}+18 b'2x^{1}-4x^{0}.
\frac{x^{2}-4x^{1}-12x^{0}-\left(2x^{1+1}-4x^{1}+18\times 2x^{1}+18\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{x^{2}-4x^{1}-12x^{0}-\left(2x^{2}-4x^{1}+36x^{1}-72x^{0}\right)}{\left(x^{2}-4x^{1}-12\right)^{2}}
Issimplifika.
\frac{-x^{2}-36x^{1}+60x^{0}}{\left(x^{2}-4x^{1}-12\right)^{2}}
Ikkombina termini simili.
\frac{-x^{2}-36x+60x^{0}}{\left(x^{2}-4x-12\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-x^{2}-36x+60\times 1}{\left(x^{2}-4x-12\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{-x^{2}-36x+60}{\left(x^{2}-4x-12\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.