Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
Iffattura 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(-x+1\right)\left(2x+1\right) u x-1 huwa \left(x-1\right)\left(2x+1\right). Immultiplika \frac{3}{\left(-x+1\right)\left(2x+1\right)} b'\frac{-1}{-1}. Immultiplika \frac{x}{x-1} b'\frac{2x+1}{2x+1}.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Billi \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} u \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
Agħmel il-multiplikazzjonijiet fi 3\left(-1\right)+x\left(2x+1\right).
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{2x+3}{2x+1}
Annulla x-1 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
Iffattura 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(-x+1\right)\left(2x+1\right) u x-1 huwa \left(x-1\right)\left(2x+1\right). Immultiplika \frac{3}{\left(-x+1\right)\left(2x+1\right)} b'\frac{-1}{-1}. Immultiplika \frac{x}{x-1} b'\frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Billi \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} u \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
Agħmel il-multiplikazzjonijiet fi 3\left(-1\right)+x\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
Annulla x-1 fin-numeratur u d-denominatur.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Agħmel l-aritmetika.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Agħmel l-aritmetika.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Ikkombina termini simili.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
Naqqas 4 minn 4 u 6 minn 2.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.