Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2x^{2}\left(-3\right)-6x^{2}}{-12x}
Immultiplika x u x biex tikseb x^{2}.
\frac{-6x^{2}-6x^{2}}{-12x}
Immultiplika 2 u -3 biex tikseb -6.
\frac{-12x^{2}}{-12x}
Ikkombina -6x^{2} u -6x^{2} biex tikseb -12x^{2}.
x
Annulla -12x fin-numeratur u d-denominatur.
\frac{-12x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\left(-6x\right)x^{1}-6x^{2})-\left(\left(-6x\right)x^{1}-6x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{1})}{\left(-12x^{1}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{-12x^{1}\left(\left(-6x\right)x^{1-1}+2\left(-6\right)x^{2-1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{1-1}}{\left(-12x^{1}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{-12x^{1}\left(\left(-6x\right)x^{0}-12x^{1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
Issimplifika.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
Immultiplika -12x^{1} b'\left(-6x\right)x^{0}-12x^{1}.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}\left(-12\right)x^{0}-6x^{2}\left(-12\right)x^{0}\right)}{\left(-12x^{1}\right)^{2}}
Immultiplika \left(-6x\right)x^{1}-6x^{2} b'-12x^{0}.
\frac{-12\left(-6x\right)x^{1}-12\left(-12\right)x^{1+1}-\left(\left(-6x\right)\left(-12\right)x^{1}-6\left(-12\right)x^{2}\right)}{\left(-12x^{1}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{72xx^{1}+144x^{2}-\left(72xx^{1}+72x^{2}\right)}{\left(-12x^{1}\right)^{2}}
Issimplifika.
\frac{72x^{2}}{\left(-12x^{1}\right)^{2}}
Ikkombina termini simili.
\frac{72x^{2}}{\left(-12x\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.