Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2x^{2}y^{2}}{4x^{2}+2401\times 3x^{-3}}
Ikkalkula 7 bil-power ta' 4 u tikseb 2401.
\frac{2x^{2}y^{2}}{4x^{2}+7203x^{-3}}
Immultiplika 2401 u 3 biex tikseb 7203.
\frac{2x^{2}y^{2}}{x^{-3}\left(4x^{5}+7203\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2y^{2}x^{5}}{4x^{5}+7203}
Biex tiddividi l-qawwa tal-istess bażi, naqqas l-esponent tad-denominatur mill-esponent tan-numeratur.
\frac{\left(4x^{2}+7203x^{-3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2y^{2}x^{2})-2y^{2}x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2}+7203x^{-3})}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 2\times 2y^{2}x^{2-1}-2y^{2}x^{2}\left(2\times 4x^{2-1}-3\times 7203x^{-3-1}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Issimplifika.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Immultiplika 4x^{2}+7203x^{-3} b'4y^{2}x^{1}.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-\left(2y^{2}x^{2}\times 8x^{1}+2y^{2}x^{2}\left(-21609\right)x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Immultiplika 2y^{2}x^{2} b'8x^{1}-21609x^{-4}.
\frac{4\times 4y^{2}x^{2+1}+7203\times 4y^{2}x^{-3+1}-\left(2y^{2}\times 8x^{2+1}+2y^{2}\left(-21609\right)x^{2-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{16y^{2}x^{3}+28812y^{2}x^{-2}-\left(16y^{2}x^{3}+\left(-43218y^{2}\right)x^{-2}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Issimplifika.
\frac{72030y^{2}x^{-2}}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Ikkombina termini simili.