Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w}{w-1}
Iffattura w^{2}-1.
\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(w-1\right)\left(w+1\right) u w-1 huwa \left(w-1\right)\left(w+1\right). Immultiplika \frac{w}{w-1} b'\frac{w+1}{w+1}.
\frac{2w+w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
Billi \frac{2w}{\left(w-1\right)\left(w+1\right)} u \frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2w+w^{2}+w}{\left(w-1\right)\left(w+1\right)}
Agħmel il-multiplikazzjonijiet fi 2w+w\left(w+1\right).
\frac{3w+w^{2}}{\left(w-1\right)\left(w+1\right)}
Ikkombina termini simili f'2w+w^{2}+w.
\frac{3w+w^{2}}{w^{2}-1}
Espandi \left(w-1\right)\left(w+1\right).